Advertisements
Advertisements
Question
Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.
Solution
Given, 2l + 2m – n = 0 .....[1]
⇒ n = 2(l + m) ......[2]
And mn + nl + lm = 0
⇒ 2m(l + m) + 2(l + m)l + lm = 0
⇒ 2lm + 2m2 + 2l2 + 2lm + lm = 0
⇒ 2m2 + 5lm + 2l2 = 0
⇒ 2m2 + 4lm + lm + 2l2 = 0
⇒ (2m + l)(m + 2l) = 0
So, we have two cases,
l = – 2m
⇒ – 4m + 2m – n = 0 ......[From 1]
⇒ n = 2m
Hence, direction ratios of one line is proportional to – 2m, m, – 2m or direction ratios are (2, 1, –2)
Another case is,
m = – 2l
⇒ 2l + 2(– 2l) – n = 0
⇒ 2l – 4l = n
⇒ n = – 2l
Hence, direction ratios of another lines is proportional to l, – 2l, – 2l or direction ratios are (1, – 2, – 2)
Therefore, direction vectors of two lines are
`b_1 = -2hati + hatj - 2hatk` and `b_2 = hati - 2hatj - 2hatk`
Also, angle between two lines,
`vecr = veca_1 + lambdavecb_1` and `veca_2 + muvecb_2` is given by
`costheta = |(vecb_1 * vecb_2)/(|vecb_1||vecb_2|)|`
Now, `vecb_1 * vecb_2 = 2(1) + 1(-2) + (-2)(-2)`
= 2 – 2 + 4
= 0
⇒ cos θ = 0
⇒ θ = 90°
Hence, angle between given two lines is 90°
APPEARS IN
RELATED QUESTIONS
Name the octants in which the following points lie:
(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),
(–3, –1, 6), (2, –4, –7).
If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.
Name the octants in which the following points lie:
(–5, –4, 7)
A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.
Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.
Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).
Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle.
Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?
Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Find the ratio in which the sphere x2 + y2 + z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).
Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.
Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to
The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are
The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is
The length of the perpendicular drawn from the point P(a, b, c) from z-axis is
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).
If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that
`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`
The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0
Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.
If the directions cosines of a line are k, k, k, then ______.
The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.