Advertisements
Advertisements
Question
Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?
Solution
Let A(3,6,9), B(10,20,30) and C( 25,\[-\]41,5) are vertices of \[\bigtriangleup ABC\]
AB =\[\sqrt{\left( 10 - 3 \right)^2 + \left( 20 - 6 \right)^2 + \left( 30 - 9 \right)^2}\]
\[= \sqrt{\left( 7 \right)^2 + \left( 14 \right)^2 + \left( 21 \right)^2}\]
\[ = \sqrt{49 + 196 + 441}\]
\[ = \sqrt{686}\]
\[ = 7\sqrt{14}\]
BC =\[\sqrt{\left( 25 - 10 \right)^2 + \left( - 41 - 20 \right)^2 + \left( 5 - 30 \right)^2}\]
\[= \sqrt{\left( 15 \right)^2 + \left( - 61 \right)^2 + \left( - 25 \right)^2}\]
\[ = \sqrt{225 + 3721 + 625}\]
\[ = \sqrt{4571}\]
CA=\[\sqrt{\left( 3 - 25 \right)^2 + \left( 6 + 41 \right)^2 + \left( 9 - 5 \right)^2}\]
\[= \sqrt{\left( - 22 \right)^2 + \left( 47 \right)^2 + \left( - 4 \right)^2}\]
\[ = \sqrt{484 + 2209 + 16}\]
\[ = \sqrt{2709}\]
\[ = 3\sqrt[]{301}\]
\[A B^2 + B C^2 = \left( 7\sqrt{14} \right)^2 + \left( \sqrt{4571} \right)^2 \]
\[ = 686 + 4571\]
\[ = 5257\]
\[C A^2 = 2709\]
\[ \therefore A B^2 + B C^2 \neq C A^2\]
A triangle\[\bigtriangleup ABC\]is right-angled at B if \[C A^2 = A B^2 + B C^2\]
But,\[C A^2\] ≠\[A B^2 + B C^2\]Hence, the points are not vertices of a right-angled triangle.
APPEARS IN
RELATED QUESTIONS
Name the octants in which the following points lie:
(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5),
(–3, –1, 6), (2, –4, –7).
The x-axis and y-axis taken together determine a plane known as_______.
Name the octants in which the following points lie:
(4, –3, 5)
Name the octants in which the following points lie:
(2, –5, –7)
Name the octants in which the following points lie:
(–7, 2 – 5)
Find the image of:
(–4, 0, 0) in the xy-plane.
Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.
Planes are drawn through the points (5, 0, 2) and (3, –2, 5) parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed.
Find the distances of the point P(–4, 3, 5) from the coordinate axes.
The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.
Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).
Prove that the point A(1, 3, 0), B(–5, 5, 2), C(–9, –1, 2) and D(–3, –3, 0) taken in order are the vertices of a parallelogram. Also, show that ABCD is not a rectangle.
Find the coordinates of the point which is equidistant from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).
If A(–2, 2, 3) and B(13, –3, 13) are two points.
Find the locus of a point P which moves in such a way the 3PA = 2PB.
Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).
Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle.
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.
Verify the following:
(5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.
Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.
What is the locus of a point for which y = 0, z = 0?
The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are
The perpendicular distance of the point P(3, 3,4) from the x-axis is
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).
The locus represented by xy + yz = 0 is ______.
The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.
The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hati + 2/sqrt(14)hatj + 3/sqrt(14)hatk`.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.