English

Show that the Points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) Are the Vertices of a Square. - Mathematics

Advertisements
Advertisements

Question

Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.

Solution

Let A(3,3,3) , B(0,6,3) , C( 1,7,7) and D (4,4,7) are the vertices of quadrilateral \[\square ABCD\]

We have : 

AB =\[\sqrt{\left( 0 - 3 \right)^2 + \left( 6 - 3 \right)^2 + \left( 3 - 3 \right)^2}\] 

\[= \sqrt{\left( - 3 \right)^2 + \left( 3 \right)^2 + \left( 0 \right)^2}\]
\[ = \sqrt{9 + 9 + 0}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]

BC =\[\sqrt{\left( 1 - 0 \right)^2 + \left( 7 - 6 \right)^2 + \left( 7 - 3 \right)^2}\]

\[= \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( 4 \right)^2}\]
\[ = \sqrt{1 + 1 + 16}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]

CD =\[\sqrt{\left( 4 - 1 \right)^2 + \left( 4 - 7 \right)^2 + \left( 7 - 7 \right)^2}\]

\[= \sqrt{\left( 3 \right)^2 + \left( - 3 \right)^2 + \left( 0 \right)^2}\]
\[ = \sqrt{9 + 9 + 0}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]

DA =\[\sqrt{\left( 4 - 3 \right)^2 + \left( 4 - 3 \right)^2 + \left( 7 - 3 \right)^2}\]

\[= \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( 4 \right)^2}\]
\[ = \sqrt{1 + 1 + 16}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]

AB = BC = CD = DA

AC =
AB = BC = CD = DA

AC =\[\sqrt{\left( 1 - 3 \right)^2 + \left( 7 - 3 \right)^2 + \left( 7 - 3 \right)^2}\]
\[= \sqrt{\left( - 2 \right)^2 + \left( 4 \right)^2 + \left( 4 \right)^2}\]
\[ = \sqrt{4 + 16 + 16}\]
\[ = \sqrt{36}\]
\[ = 6\] 
BD =\[\sqrt{\left( 4 - 0 \right)^2 + \left( 4 - 6 \right)^2 + \left( 7 - 3 \right)^2}\]
\[\]
\[= \sqrt{\left( 4 \right)^2 + \left( - 2 \right)^2 + \left( 4 \right)^2}\]
\[ = \sqrt{16 + 4 + 16}\]
\[ = \sqrt{36}\]
\[ = 6\]
\[\therefore\]AC = BD 
Since, all sides and diagonals of quadrilateral\[\square ABCD\] are equal
Therefore, the points are the vertices of a square.    

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [Page 9]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 10 | Page 9

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.


Name the octants in which the following points lie: (5, 2, 3)


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.


Find the distances of the point P(–4, 3, 5) from the coordinate axes. 


The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.


Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 


Verify the following:

 (5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.


Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).


The coordinates of the mid-points of sides AB, BC and CA of  △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.


Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.


Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).


The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is


Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to 


The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are 


The length of the perpendicular drawn from the point P(a, b, c) from z-axis is 


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.


The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×