English

Verify the Following: (0, 7, 10), (–1, 6, 6) and (–4, 9, –6) Are Vertices of a Right-angled Triangle. - Mathematics

Advertisements
Advertisements

Question

Verify the following: 

(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.

Solution

Let A(0,7,10) , B( \[-\]1,6,6) and C( \[-\]4,9,6) be the vertices of \[\bigtriangleup ABC\]Then ,

AB = \[\sqrt{\left( - 1 - 0 \right)^2 + \left( 6 - 7 \right)^2 + \left( 6 - 10 \right)^2}\]

\[= \sqrt{\left( - 1 \right)^2 + \left( - 1 \right)^2 + \left( - 4 \right)^2}\]
\[ = \sqrt{1 + 1 + 16}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]

BC = \[\sqrt{\left( - 4 + 1 \right)^2 + \left( 9 - 6 \right)^2 + \left( 6 - 6 \right)^2}\]

\[= \sqrt{\left( - 3 \right)^2 + \left( 3 \right)^2 + 0}\]
\[ = \sqrt{9 + 9}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]


AC = \[\sqrt{\left( - 4 - 0 \right)^2 + \left( 9 - 7 \right)^2 + \left( 6 - 10 \right)^2}\]

\[= \sqrt{\left( - 4 \right)^2 + \left( 2 \right)^2 + \left( - 4 \right)^2}\]
\[ = \sqrt{16 + 4 + 16}\]
\[ = \sqrt{36}\]
\[ = 6\]

\[A C^2\]\[= A B^2 + B C^2\]

Thus, the given points are the vertices of a right-angled triangle.

shaalaa.com
  Is there an error in this question or solution?
Chapter 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 20.2 | Page 10

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Name the octants in which the following points lie: 

 (7, 4, –3)


Name the octants in which the following points lie: 

(–7, 2 – 5)


Find the image  of:

 (5, 2, –7) in the xy-plane.


Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.


Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3). 


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


If A(–2, 2, 3) and B(13, –3, 13) are two points.
Find the locus of a point P which moves in such a way the 3PA = 2PB.


Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).


Verify the following: 

 (–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.


Verify the following:

 (5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.


Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.


Show that the points A(1, 2, 3), B(–1, –2, –1), C(2, 3, 2) and D(4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.


Write the distance of the point P (2, 3,5) from the xy-plane.


Write the distance of the point P(3, 4, 5) from z-axis.


Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.


Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).


The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is


XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio


What is the locus of a point for which y = 0, z = 0?


The perpendicular distance of the point P(3, 3,4) from the x-axis is 


The length of the perpendicular drawn from the point P(a, b, c) from z-axis is 


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`


Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Find the foot of perpendicular from the point (2,3,–8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.


The locus represented by xy + yz = 0 is ______.


The direction cosines of the vector `(2hati + 2hatj - hatk)` are ______.


The line `vecr = 2hati - 3hatj - hatk + lambda(hati - hatj + 2hatk)` lies in the plane `vecr.(3hati + hatj - hatk) + 2` = 0.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×