Advertisements
Advertisements
Question
Find the points on z-axis which are at a distance \[\sqrt{21}\]from the point (1, 2, 3).
Solution
Let the point be A (0, 0, z).Then,
AP = \[\sqrt{21}\]
\[\Rightarrow \sqrt{\left( 0 - 1 \right)^2 + \left( 0 - 2 \right)^2 + \left( z - 3 \right)^2} = \sqrt{21}\]
\[ \Rightarrow \left( - 1 \right)^2 + \left( - 2 \right)^2 + \left( z - 3 \right)^2 = 21\]
\[ \Rightarrow 1 + 4 + \left( z - 3 \right)^2 = 21\]
\[ \Rightarrow \left( z - 3 \right)^2 = 21 - 5\]
\[ \Rightarrow \left( z - 3 \right)^2 = 16\]
\[ \Rightarrow z - 3 = \pm 4\]
\[ \Rightarrow z - 3 = 4 or z - 3 = - 4\]
\[ \Rightarrow z = 7 or z = - 1\]
Hence, the coordinates of the required point are (0, 0, 7) and (0, 0, −1).
APPEARS IN
RELATED QUESTIONS
Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.
Name the octants in which the following points lie:
(–5, 4, 3)
Name the octants in which the following points lie:
(7, 4, –3)
Find the image of:
(–2, 3, 4) in the yz-plane.
Find the image of:
(–4, 0, 0) in the xy-plane.
Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).
Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.
Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.
Find the locus of P if PA2 + PB2 = 2k2, where A and B are the points (3, 4, 5) and (–1, 3, –7).
Are the points A(3, 6, 9), B(10, 20, 30) and C(25, –41, 5), the vertices of a right-angled triangle?
Verify the following:
(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.
Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.
Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.
Write the distance of the point P (2, 3,5) from the xy-plane.
Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.
Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.
Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).
The length of the perpendicular drawn from the point P (3, 4, 5) on y-axis is
The perpendicular distance of the point P(3, 3,4) from the x-axis is
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`
If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.
Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.
If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane
Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).
Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0
Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.
Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.
The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hati + 2/sqrt(14)hatj + 3/sqrt(14)hatk`.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.