Advertisements
Advertisements
प्रश्न
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
उत्तर
We know that, equation of the plane passing through two points (x1, y1, z1) and (x2, y2, z2) with its normal’s direction ratios is
a(x – x1) + b(y – y1) + c(z – z1) = 0 ......(i)
Now, if the plane is passing through two points (2, 1, –1) and (–1, 3, 4) then
a(x2 – x1) + b(y2 – y1) + c(z2 – z1) = 0
a(–1 – 2) + b(3 – 1) + c(4 + 1) = 0
–3a + 2b + 5c = 0 .......(ii)
As the required plane is perpendicular to the given plane x – 2y + 4z = 10, then
1.a – 2.b + 4.c = 10 ......(iii)
On solving (ii) and (iii) we get,
`a/(8 + 10) = (-b)/(-2 - 5) = c/(6 - 2) = lambda`
So, a = 18λ, b = 17λ and c = 4λ
Thus, the required plane is
18λ(x – 2) + 17λ(y – 1) + 4λ(z + 1) = 0
18x – 36 + 17y – 17 + 4z + 4 = 0
⇒ 18x + 17y + 4z – 49 = 0
APPEARS IN
संबंधित प्रश्न
Find the image of:
(–5, 4, –3) in the xz-plane.
Find the image of:
(5, 2, –7) in the xy-plane.
Find the coordinates of the point which is equidistant from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).
Verify the following:
(0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.
Verify the following:
(–1, 2, 1), (1, –2, 5), (4, –7, 8) and (2, –3, 4) are vertices of a parallelogram.
Verify the following:
(5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.
Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.
Write the distance of the point P (2, 3,5) from the xy-plane.
Write the distance of the point P(3, 4, 5) from z-axis.
The coordinates of the mid-points of sides AB, BC and CA of △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.
Find the point on x-axis which is equidistant from the points A (3, 2, 2) and B (5, 5, 4).
The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are
The length of the perpendicular drawn from the point P(a, b, c) from z-axis is
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`
If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.
Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).
Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.
If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.
The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.
The angle between the planes `vecr.(2hati - 3hatj + hatk)` = 1 and `vecr.(hati - hatj)` = 4 is `cos^-1((-5)/sqrt(58))`.