हिंदी

If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.

रिक्त स्थान भरें

उत्तर

If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is 2.

Explanation:

Note that sin2α + sin2β + sin2γ  = (1 – cos2α) + (1 – cos2β) + (1 – cos2γ)

= 3 – (cos2α + cos2β + cos2γ)

= 2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Introduction to Three Dimensional Geometry - Solved Examples [पृष्ठ २३४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 12 Introduction to Three Dimensional Geometry
Solved Examples | Q 21 | पृष्ठ २३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Name the octants in which the following points lie: 

(4, –3, 5)


Find the image  of:

 (5, 2, –7) in the xy-plane.


Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). 


Find the coordinates of the point which is equidistant  from the four points O(0, 0, 0), A(2, 0, 0), B(0, 3, 0) and C(0, 0, 8).


Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).


What is the locus of a point for which y = 0, z = 0?


The coordinates of the foot of the perpendicular drawn from the point P(3, 4, 5) on the yz- plane are


The length of the perpendicular drawn from the point P(a, b, c) from z-axis is 


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`


Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that

`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Find the equations of the line passing through the point (3,0,1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


Show that the points `(hati - hatj + 3hatk)` and `3(hati + hatj + hatk)` are equidistant from the plane `vecr * (5hati + 2hatj - 7hatk) + 9` = 0 and lies on opposite side of it.


If l1, m1, n1 ; l2, m2, n2 ; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.


The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.


The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×