मराठी

P Verify the Following: (0, 7, –10), (1, 6, –6) and (4, 9, –6) Are Vertices of an Isosceles Triangle. - Mathematics

Advertisements
Advertisements

प्रश्न

Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle.

उत्तर

 Let A(0, 7, \[-\]10) , B(1, 6, ) , C(4, 9, \[-\]6) be the vertices of \[\bigtriangleup ABC\]Then,
 AB = \[\sqrt{\left( 1 - 0 \right)^2 + \left( 6 - 7 \right)^2 + \left( - 6 + 10 \right)^2}\]

\[= \sqrt{1^2 + \left( - 1 \right)^2 + 4^2}\]
\[ = \sqrt{1 + 1 + 16}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]

BC = \[\sqrt{\left( 4 - 1 \right)^2 + \left( 9 - 6 \right)^2 + \left( - 6 + 6 \right)^2}\]

\[= \sqrt{3^2 + 3^2 + 0}\]
\[ = \sqrt{9 + 9}\]
\[ = \sqrt{18}\]
\[ = 3\sqrt{2}\]

CA= \[\sqrt{\left( 0 - 4 \right)^2 + \left( 7 - 9 \right)^2 + \left( - 10 + 6 \right)^2}\]

\[= \sqrt{16 + 4 + 16}\]
\[ = \sqrt{36}\]
\[ = 6\]

Clearly, AB BC
Thus, the given points are the vertices of an isosceles triangle.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Introduction to three dimensional coordinate geometry - Exercise 28.2 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 28 Introduction to three dimensional coordinate geometry
Exercise 28.2 | Q 2.1 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Coordinate planes divide the space into ______ octants.


Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.


Name the octants in which the following points lie: (5, 2, 3)


Name the octants in which the following points lie: 

(4, –3, 5)


Name the octants in which the following points lie: 

(–7, 2 – 5)


Find the image  of: 

 (–2, 3, 4) in the yz-plane.


A cube of side 5 has one vertex at the point (1, 0, –1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive z-axis. Find the coordinates of the other vertices of the cube.


Planes are drawn through the points (5, 0, 2) and (3, –2, 5) parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed. 


The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.


Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). 


Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.


Find the equation of the set of the points P such that its distances from the points A(3, 4, –5) and B(–2, 1, 4) are equal.


Write the distance of the point P (2, 3,5) from the xy-plane.


Write the distance of the point P(3, 4, 5) from z-axis.


The coordinates of the mid-points of sides AB, BC and CA of  △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.


Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.


Find the point on y-axis which is at a distance of  \[\sqrt{10}\] units from the point (1, 2, 3).


The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is


The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is


Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to 


XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio


The coordinates of the foot of the perpendicular from a point P(6,7, 8) on x - axis are 


The length of the perpendicular drawn from the point P(a, b, c) from z-axis is 


Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.


The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×