मराठी

The Ratio in Which the Line Joining the Points (A, B, C) and (–A, –C, –B) is Divided by the Xy-plane is - Mathematics

Advertisements
Advertisements

प्रश्न

The ratio in which the line joining the points (a, b, c) and (–a, –c, –b) is divided by the xy-plane is

पर्याय

  •  a : b

  •  b : c

  • c a

  • c : b

MCQ

उत्तर

 c : b

Let A\[\equiv\](a, b, c) and B\[\equiv\](\[-\]a,\[-\]c,\[-\]b)
Let the line joining A and B be divided by the xy-plane at point P in the ratio \[\lambda: 1\] 

Then, we have,

P\[\equiv \left( \frac{- a\lambda + a}{\lambda + 1}, \frac{- c\lambda + b}{\lambda + 1}, \frac{- b\lambda + c}{\lambda + 1} \right)\]

Since P lies on the xy-plane, the z-coordinate of P will be zero.

\[\therefore \frac{- b\lambda + c}{\lambda + 1} = 0\]
\[ \Rightarrow - b\lambda + c = 0\]
\[ \Rightarrow \lambda = \frac{c}{b}\]

Hence, the xz-plane divides AB in the ratio c : b 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 28: Introduction to three dimensional coordinate geometry - Exercise 28.5 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 28 Introduction to three dimensional coordinate geometry
Exercise 28.5 | Q 2 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Name the octants in which the following points lie: 

(4, –3, 5)


Name the octants in which the following points lie: 

 (7, 4, –3)


Name the octants in which the following points lie: 

(–7, 2 – 5)


Find the image  of: 

 (–5, 4, –3) in the xz-plane. 


Find the image  of: 

 (–5, 0, 3) in the xz-plane. 


The coordinates of a point are (3, –2, 5). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.


Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). 


Determine the point on z-axis which is equidistant from the points (1, 5, 7) and (5, 1, –4).


Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).


Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.


Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).


Write the distance of the point P(3, 4, 5) from z-axis.


The coordinates of the mid-points of sides AB, BC and CA of  △ABC are D(1, 2, −3), E(3, 0,1) and F(−1, 1, −4) respectively. Write the coordinates of its centroid.


Write the length of the perpendicular drawn from the point P(3, 5, 12) on x-axis.


What is the locus of a point for which y = 0, z = 0?


Find the ratio in which the line segment joining the points (2, 4,5) and (3, −5, 4) is divided by the yz-plane.


Let (3, 4, –1) and (–1, 2, 3) be the end points of a diameter of a sphere. Then, the radius of the sphere is equal to 


XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`


Find the image of the point having position vector `hati + 3hatj + 4hatk` in the plane `hatr * (2hati - hatj + hatk)` + 3 = 0.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, l2 + m2 – n2 = 0


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is ax + by `+- (sqrt(a^2 + b^2) tan alpha)z ` = 0


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


If the directions cosines of a line are k, k, k, then ______.


The intercepts made by the plane 2x – 3y + 5z +4 = 0 on the co-ordinate axis are `-2, 4/3, - 4/5`.


The angle between the line `vecr = (5hati - hatj - 4hatk) + lambda(2hati - hatj + hatk)` and the plane `vec.(3hati - 4hatj - hatk)` + 5 = 0 is `sin^-1(5/(2sqrt(91)))`.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×