Advertisements
Advertisements
प्रश्न
Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).
उत्तर
We know that, the equation of a plane passing through three non-collinear points
(x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) is
`|(x - x_1, y - y_1, z - z_1),(x_2 - x_1, y_2 - y_1, z_2 - z_1),(x_3 - x_1, y_3 - y_1, z_3 - z_1)|` = 0
⇒ `|(x - 2, y - 1, z - 0),(3 - 2, -2 - 1, -2 - 0),(3 - 2, 1 - 1, 7 - 0)|` = 0
⇒ `|(x - 2, y - 1, z),(1, -3, -2),(1, 0, 7)|` = 0
⇒ (x − 2)(−21 + 0) − (y − 1)(7 + 2) + z(3) = 0
⇒ −21x + 42 − 9y + 9 + 3z = 0
⇒ −21x − 9y + 3z = −51
∴ 7x + 3y − z = 17
So, the required equation of plane is 7x + 3y − z = 17.
APPEARS IN
संबंधित प्रश्न
Coordinate planes divide the space into ______ octants.
Three vertices of a parallelogram ABCD are A (3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). Find the coordinates of the fourth vertex.
Name the octants in which the following points lie:
(–5, 4, 3)
Name the octants in which the following points lie:
(–5, –3, –2)
Find the image of:
(–2, 3, 4) in the yz-plane.
Find the image of:
(–5, 0, 3) in the xz-plane.
Find the distances of the point P(–4, 3, 5) from the coordinate axes.
Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1).
Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).
Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.
Verify the following:
(5, –1, 1), (7, –4,7), (1, –6,10) and (–1, – 3,4) are the vertices of a rhombus.
Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).
Find the locus of the point, the sum of whose distances from the points A(4, 0, 0) and B(–4, 0, 0) is equal to 10.
Show that the plane ax + by + cz + d = 0 divides the line joining the points (x1, y1, z1) and (x2, y2, z2) in the ratio \[- \frac{a x_1 + b y_1 + c z_1 + d}{a x_2 + b y_2 + c z_2 + d}\]
The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is
XOZ-plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio
The perpendicular distance of the point P(3, 3,4) from the x-axis is
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)
If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.
If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that
`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`
If the directions cosines of a line are k, k, k, then ______.
The cartesian equation of the plane `vecr * (hati + hatj - hatk)` is ______.