मराठी

The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.

पर्याय

  • `sqrt(3)/2`

  • `sqrt(2)/3`

  • `2/7`

  • `3/7`

MCQ
रिकाम्या जागा भरा

उत्तर

The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to `2/7`.

Explanation:

Equation of plane is 2x – 3y + 6z – 11 = 0

or `vecn = 2hati - 3hatj + 6hatk`

Equation of line is `vecb = hati`

`sin theta = (vecb * vecn)/(|vecb||vecn|)`

`sin(sin^-1alpha) = ((2hati - 3hatj + 6hatk)*(hati + 0hatj + 0hatk))/(sqrt((2)^2 + (-3)^2 + (6)^2 * ssqrt((1)^2)`

`alpha = 2/sqrt(49)`

`alpha = 2/7`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Introduction to Three Dimensional Geometry - Exercise [पृष्ठ २३८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 12 Introduction to Three Dimensional Geometry
Exercise | Q 36 | पृष्ठ २३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The x-axis and y-axis taken together determine a plane known as_______.


If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (–4, 3b, –10) and R (8, 14, 2c), then find the values of a, b and c.


Find the image  of: 

 (–4, 0, 0) in the xy-plane. 


Planes are drawn parallel to the coordinate planes through the points (3, 0, –1) and (–2, 5, 4). Find the lengths of the edges of the parallelepiped so formed.


Determine the points in zx-plane are equidistant from the points A(1, –1, 0), B(2, 1, 2) and C(3, 2, –1). 


Find the point on y-axis which is equidistant from the points (3, 1, 2) and (5, 5, 2).


Prove that the triangle formed by joining the three points whose coordinates are (1, 2, 3), (2, 3, 1) and (3, 1, 2) is an equilateral triangle.


Show that the points A(3, 3, 3), B(0, 6, 3), C(1, 7, 7) and D(4, 4, 7) are the vertices of a square.


Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle. 


Verify the following: 

 (0, 7, –10), (1, 6, –6) and (4, 9, –6) are vertices of an isosceles triangle. 


Verify the following: 

(0, 7, 10), (–1, 6, 6) and (–4, 9, –6) are vertices of a right-angled triangle.


Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, –1).


Find the ratio in which the sphere x2 + y2 z2 = 504 divides the line joining the points (12, –4, 8) and (27, –9, 18).


What is the locus of a point for which y = 0, z = 0?


Find the point on y-axis which is at a distance of  \[\sqrt{10}\] units from the point (1, 2, 3).


The ratio in which the line joining (2, 4, 5) and (3, 5, –9) is divided by the yz-plane is


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/γ` = 3


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


If a line makes an angle of `pi/4` with each of y and z axis, then the angle which it makes with x-axis is ______.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that

`1/a^2 + 1/b^2 + 1/c^2 = 1/(a"'"^2) + 1/(b"'"^2) + 1/(c"'"^2)`


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


The area of the quadrilateral ABCD, where A(0, 4, 1), B(2,  3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hati + 2/sqrt(14)hatj + 3/sqrt(14)hatk`.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vecr = (5hati - 4hatj + 6hatk) + lambda(3hati + 7hatj - 2hatk)`.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vecr.(5hati - 3hatj - 2hatk)` = 38.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×