Advertisements
Advertisements
प्रश्न
Find the coordinates of points which trisect the line segment joining (1, –2) and (–3, 4)
योग
उत्तर
Let A(1, –2) and B(–3, 4) be the given points.
Let the points of trisection be P and Q. Then,
AP = PQ = QB = λ (say).
∴ PB = PQ + QB = 2λ and AQ = AP + PQ = 2λ
⇒ AP : PB = λ : 2λ = 1 : 2 and
AQ : QB = 2λ : λ = 2 : 1
So, P divides AB internally in the ratio 1 : 2 while Q divides internally in the ratio 2 : 1. Thus, the coordinates of P and Q are
`P( \frac{1\times (-3)+2\times 1}{1+2},\ \frac{1\times 4+2\times (-2)}{1+2})=P( \frac{-1}{3},\ 0)`
`Q( \frac{2\times (-3)+1\times 1}{2+1},\ \frac{2\times 4+1\times (-2)}{2+1})=Q( \frac{-5}{3},\ 2)" respectively"`
Hence, the two points of trisection are (–1/3, 0) and (–5/3, 2).
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?