हिंदी

Find the Discriminant of the Quadratic Equation 3 √ 3 X 2 + 10 X + √ 3 = 0 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the discriminant of the quadratic equation \[3\sqrt{3} x^2 + 10x + \sqrt{3} = 0\].

संक्षेप में उत्तर

उत्तर

Given that quadric equation is \[3\sqrt{3} x^2 + 10x + \sqrt{3} = 0\].

Then, find the value of discrimenant.

Here, `a =3sqrt3 , b = 10 and , c = sqrt 3` 

As we know that discrimenant D = b^2 - 4ac

Putting the value of `a =3sqrt3 , b = 10 and , c = sqrt 3` 

` = (10)^2 - 4 xx 3 sqrt3 xx sqrt3`

= 100 - 36

 = 64

Thus, the value of discrimenant be D = 64 .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Quadratic Equations - Exercise 4.14 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 4 Quadratic Equations
Exercise 4.14 | Q 14 | पृष्ठ ८२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×