हिंदी

Find the equation of the locus of a point which moves such that the ratio of its distances from (2, 0) and (1, 3) is 5 : 4. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the locus of a point which moves such that the ratio of its distances from (2, 0) and (1, 3) is 5 : 4.

 
योग

उत्तर

Let A(2, 0) and B(1, 3) be the given points. Let P (h, k) be a point such that PA:PB = 5:4
\[\therefore \frac{PA}{PB} = \frac{5}{4}\]
\[ \Rightarrow \frac{\sqrt{\left( h - 2 \right)^2 + \left( k - 0 \right)^2}}{\sqrt{\left( h - 1 \right)^2 + \left( k - 3 \right)^2}} = \frac{5}{4}\]
Squaring both sides, we get:
\[16\left( h^2 - 4h + 4 + k^2 \right) = 25\left( h^2 - 2h + 1 + k^2 - 6k + 9 \right)\]
\[ \Rightarrow 9 h^2 + 9 k^2 + 64h - 50h - 150k - 64 + 250 = 0\]
\[ \Rightarrow 9 h^2 + 9 k^2 + 14h - 150k + 186 = 0\]
Hence, the locus of (h, k) is
\[9 x^2 + 9 y^2 + 14x - 150y + 186 = 0\]

shaalaa.com
Brief Review of Cartesian System of Rectanglar Co-ordinates
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Brief review of cartesian system of rectangular co-ordinates - Exercise 22.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 22 Brief review of cartesian system of rectangular co-ordinates
Exercise 22.2 | Q 2 | पृष्ठ १८

संबंधित प्रश्न

If the line segment joining the points P (x1, y1) and Q (x2, y2) subtends an angle α at the origin O, prove that
OP · OQ cos α = x1 x2 + y1, y2


Four points A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are given in such a way that \[\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}\]. Find x.


Find the coordinates of the centre of the circle inscribed in a triangle whose vertices are (−36, 7), (20, 7) and (0, −8).


The base of an equilateral triangle with side 2a lies along the y-axis, such that the mid-point of the base is at the origin. Find the vertices of the triangle.


Find the distance between P (x1, y1) and Q (x2, y2) when (i) PQ is parallel to the y-axis (ii) PQ is parallel to the x-axis.


Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).

 

A point moves so that the difference of its distances from (ae, 0) and (−ae, 0) is 2a. Prove that the equation to its locus is \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]


Find the locus of a point such that the sum of its distances from (0, 2) and (0, −2) is 6.

 

A (5, 3), B (3, −2) are two fixed points; find the equation to the locus of a point P which moves so that the area of the triangle PAB is 9 units.


Find the locus of a point such that the line segments with end points (2, 0) and (−2, 0) subtend a right angle at that point.

 

A rod of length l slides between two perpendicular lines. Find the locus of the point on the rod which divides it in the ratio 1 : 2.


Find the locus of the mid-point of the portion of the line x cos α + y sin α = p which is intercepted between the axes.

 

What does the equation (x − a)2 + (y − b)2 = r2 become when the axes are transferred to parallel axes through the point (a − c, b)?

 

What does the equation (a − b) (x2 + y2) −2abx = 0 become if the origin is shifted to the point \[\left( \frac{ab}{a - b}, 0 \right)\] without rotation?


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3x − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − y2 − x + y = 0


To what point should the origin be shifted so that the equation x2 + xy − 3x − y + 2 = 0 does not contain any first degree term and constant term?


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3y2 − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − y2 − x + y = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 − y2 − 2x + 2y = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms:  y2 + x2 − 4x − 8y + 3 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 − 12x + 4 = 0


In Q.No. 1, write the distance between the circumcentre and orthocentre of ∆OAB.

 

Write the coordinates of the orthocentre of the triangle formed by points (8, 0), (4, 6) and (0, 0).


Three vertices of a parallelogram, taken in order, are (−1, −6), (2, −5) and (7, 2). Write the coordinates of its fourth vertex.

 

If the points (a, 0), (at12, 2at1) and (at22, 2at2) are collinear, write the value of t1 t2.

 

If the coordinates of the sides AB and AC of  ∆ABC are (3, 5) and (−3, −3), respectively, then write the length of side BC.

 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×