हिंदी

Find the Locus of the Mid-point of the Portion of the Line X Cos α + Y Sin α = P Which is Intercepted Between the Axes. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the locus of the mid-point of the portion of the line x cos α + y sin α = p which is intercepted between the axes.

 
योग

उत्तर

The given line is \[x\cos\alpha + y\sin\alpha = p\] 
We need to find the intersection of the above line with the coordinate axes.
Let us put x = 0, and y = 0, respectively.
Thus,
at x = 0,

\[x\cos\alpha + y\sin\alpha = p\]
at y = 0,
\[x\cos\alpha + 0 = p \Rightarrow x = psec\alpha\]
So, the points on the axes are
\[x\cos\alpha + 0 = p \Rightarrow x = psec\alpha\]
Let P(h, k) be the mid-point of the line AB.
\[\therefore h = \frac{p\sec\alpha + 0}{2}\text{ and }k = \frac{0 + pcosec\alpha}{2}\]
\[ \Rightarrow \cos\alpha = \frac{p}{2h}\text{ and }\sin\alpha = \frac{p}{2k}\]
We know that
\[\sin^2 \alpha + \cos^2 \alpha = 1\]
\[\therefore \left( \frac{p}{2h} \right)^2 + \left( \frac{p}{2k} \right)^2 = 1\]
\[ \Rightarrow \frac{1}{h^2} + \frac{1}{k^2} = \frac{4}{p^2}\]
Hence, the locus of (h, k) is \[\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}\].
shaalaa.com
Brief Review of Cartesian System of Rectanglar Co-ordinates
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Brief review of cartesian system of rectangular co-ordinates - Exercise 22.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 22 Brief review of cartesian system of rectangular co-ordinates
Exercise 22.2 | Q 11 | पृष्ठ १८

संबंधित प्रश्न

If the line segment joining the points P (x1, y1) and Q (x2, y2) subtends an angle α at the origin O, prove that
OP · OQ cos α = x1 x2 + y1, y2


The vertices of a triangle ABC are A (0, 0), B (2, −1) and C (9, 2). Find cos B.


Four points A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are given in such a way that \[\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}\]. Find x.


The points A (2, 0), B (9, 1), C (11, 6) and D (4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not.


Find the coordinates of the centre of the circle inscribed in a triangle whose vertices are (−36, 7), (20, 7) and (0, −8).


The base of an equilateral triangle with side 2a lies along the y-axis, such that the mid-point of the base is at the origin. Find the vertices of the triangle.


Find the distance between P (x1, y1) and Q (x2, y2) when (i) PQ is parallel to the y-axis (ii) PQ is parallel to the x-axis.


Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).

 

Find the locus of a point equidistant from the point (2, 4) and the y-axis.

 

Find the equation of the locus of a point which moves such that the ratio of its distances from (2, 0) and (1, 3) is 5 : 4.

 

Find the locus of a point which moves such that its distance from the origin is three times its distance from the x-axis.

 

A (5, 3), B (3, −2) are two fixed points; find the equation to the locus of a point P which moves so that the area of the triangle PAB is 9 units.


A rod of length l slides between two perpendicular lines. Find the locus of the point on the rod which divides it in the ratio 1 : 2.


If O is the origin and Q is a variable point on y2 = x, find the locus of the mid-point of OQ.

 

What does the equation (x − a)2 + (y − b)2 = r2 become when the axes are transferred to parallel axes through the point (a − c, b)?

 

What does the equation (a − b) (x2 + y2) −2abx = 0 become if the origin is shifted to the point \[\left( \frac{ab}{a - b}, 0 \right)\] without rotation?


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − x − y + 1 = 0


To what point should the origin be shifted so that the equation x2 + xy − 3x − y + 2 = 0 does not contain any first degree term and constant term?


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − y2 − x + y = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
 xy − x − y + 1 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 − y2 − 2x + 2y = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 + y2 − 5x + 2y − 5 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 − 12x + 4 = 0


Verify that the area of the triangle with vertices (4, 6), (7, 10) and (1, −2) remains invariant under the translation of axes when the origin is shifted to the point (−2, 1).


In Q.No. 1, write the distance between the circumcentre and orthocentre of ∆OAB.

 

If the points (a, 0), (at12, 2at1) and (at22, 2at2) are collinear, write the value of t1 t2.

 

If the coordinates of the sides AB and AC of  ∆ABC are (3, 5) and (−3, −3), respectively, then write the length of side BC.

 

Write the coordinates of the circumcentre of a triangle whose centroid and orthocentre are at (3, 3) and (−3, 5), respectively.

 

Write the coordinates of the in-centre of the triangle with vertices at (0, 0), (5, 0) and (0, 12).


Write the area of the triangle with vertices at (a, b + c), (b, c + a) and (c, a + b).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×