हिंदी

What Does the Equation (A − B) (X2 + Y2) −2abx = 0 Become If the Origin is Shifted to the Point ( a B a − B , 0 ) Without Rotation? - Mathematics

Advertisements
Advertisements

प्रश्न

What does the equation (a − b) (x2 + y2) −2abx = 0 become if the origin is shifted to the point \[\left( \frac{ab}{a - b}, 0 \right)\] without rotation?

योग

उत्तर

Substituting \[x = X + \frac{ab}{a - b}, y = Y + 0\] in the given equation, we get:
\[\left( a - b \right)\left[ \left( X + \frac{ab}{a - b} \right)^2 + Y^2 \right] - 2ab \times \left( X + \frac{ab}{a - b} \right) = 0\]
\[ \Rightarrow \left( a - b \right)\left( X^2 + \frac{a^2 b^2}{\left( a - b \right)^2} + \frac{2abX}{a - b} + Y^2 \right) - 2abX - \frac{2 a^2 b^2}{a - b} = 0\]
\[ \Rightarrow \left( a - b \right)\left( X^2 + Y^2 \right) + \frac{a^2 b^2}{a - b} + 2abX - 2abX - \frac{2 a^2 b^2}{a - b} = 0\]
\[ \Rightarrow \left( a - b \right)\left( X^2 + Y^2 \right) - \frac{a^2 b^2}{a - b} = 0\]
\[ \Rightarrow \left( a - b \right)^2 \left( X^2 + Y^2 \right) = a^2 b^2\]
Hence, the transformed equation is \[\left( a - b \right)^2 \left( X^2 + Y^2 \right) = a^2 b^2\].

shaalaa.com
Brief Review of Cartesian System of Rectanglar Co-ordinates
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Brief review of cartesian system of rectangular co-ordinates - Exercise 22.3 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 22 Brief review of cartesian system of rectangular co-ordinates
Exercise 22.3 | Q 2 | पृष्ठ २१

संबंधित प्रश्न

If the line segment joining the points P (x1, y1) and Q (x2, y2) subtends an angle α at the origin O, prove that
OP · OQ cos α = x1 x2 + y1, y2


Four points A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are given in such a way that \[\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}\]. Find x.


The points A (2, 0), B (9, 1), C (11, 6) and D (4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not.


The base of an equilateral triangle with side 2a lies along the y-axis, such that the mid-point of the base is at the origin. Find the vertices of the triangle.


Find the distance between P (x1, y1) and Q (x2, y2) when (i) PQ is parallel to the y-axis (ii) PQ is parallel to the x-axis.


Find the equation of the locus of a point which moves such that the ratio of its distances from (2, 0) and (1, 3) is 5 : 4.

 

A point moves so that the difference of its distances from (ae, 0) and (−ae, 0) is 2a. Prove that the equation to its locus is \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]


Find the locus of a point such that the sum of its distances from (0, 2) and (0, −2) is 6.

 

Find the locus of a point which is equidistant from (1, 3) and the x-axis.

 

A (5, 3), B (3, −2) are two fixed points; find the equation to the locus of a point P which moves so that the area of the triangle PAB is 9 units.


If A (−1, 1) and B (2, 3) are two fixed points, find the locus of a point P, so that the area of ∆PAB = 8 sq. units.


If O is the origin and Q is a variable point on y2 = x, find the locus of the mid-point of OQ.

 

Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3x − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
 x2 − y2 − 2x +2y = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − x − y + 1 = 0


Verify that the area of the triangle with vertices (2, 3), (5, 7) and (− 3 − 1) remains invariant under the translation of axes when the origin is shifted to the point (−1, 3).


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − y2 − x + y = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
 xy − x − y + 1 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms:  y2 + x2 − 4x − 8y + 3 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 + y2 − 5x + 2y − 5 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 − 12x + 4 = 0


Verify that the area of the triangle with vertices (4, 6), (7, 10) and (1, −2) remains invariant under the translation of axes when the origin is shifted to the point (−2, 1).


Three vertices of a parallelogram, taken in order, are (−1, −6), (2, −5) and (7, 2). Write the coordinates of its fourth vertex.

 

If the coordinates of the sides AB and AC of  ∆ABC are (3, 5) and (−3, −3), respectively, then write the length of side BC.

 

Write the coordinates of the circumcentre of a triangle whose centroid and orthocentre are at (3, 3) and (−3, 5), respectively.

 

Write the coordinates of the in-centre of the triangle with vertices at (0, 0), (5, 0) and (0, 12).


Write the area of the triangle with vertices at (a, b + c), (b, c + a) and (c, a + b).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×