Advertisements
Advertisements
Question
What does the equation (a − b) (x2 + y2) −2abx = 0 become if the origin is shifted to the point \[\left( \frac{ab}{a - b}, 0 \right)\] without rotation?
Solution
Substituting \[x = X + \frac{ab}{a - b}, y = Y + 0\] in the given equation, we get:
\[\left( a - b \right)\left[ \left( X + \frac{ab}{a - b} \right)^2 + Y^2 \right] - 2ab \times \left( X + \frac{ab}{a - b} \right) = 0\]
\[ \Rightarrow \left( a - b \right)\left( X^2 + \frac{a^2 b^2}{\left( a - b \right)^2} + \frac{2abX}{a - b} + Y^2 \right) - 2abX - \frac{2 a^2 b^2}{a - b} = 0\]
\[ \Rightarrow \left( a - b \right)\left( X^2 + Y^2 \right) + \frac{a^2 b^2}{a - b} + 2abX - 2abX - \frac{2 a^2 b^2}{a - b} = 0\]
\[ \Rightarrow \left( a - b \right)\left( X^2 + Y^2 \right) - \frac{a^2 b^2}{a - b} = 0\]
\[ \Rightarrow \left( a - b \right)^2 \left( X^2 + Y^2 \right) = a^2 b^2\]
Hence, the transformed equation is \[\left( a - b \right)^2 \left( X^2 + Y^2 \right) = a^2 b^2\].
APPEARS IN
RELATED QUESTIONS
The vertices of a triangle ABC are A (0, 0), B (2, −1) and C (9, 2). Find cos B.
Four points A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are given in such a way that \[\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}\]. Find x.
The points A (2, 0), B (9, 1), C (11, 6) and D (4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not.
Find the distance between P (x1, y1) and Q (x2, y2) when (i) PQ is parallel to the y-axis (ii) PQ is parallel to the x-axis.
Find the equation of the locus of a point which moves such that the ratio of its distances from (2, 0) and (1, 3) is 5 : 4.
Find the locus of a point such that the sum of its distances from (0, 2) and (0, −2) is 6.
Find the locus of a point which moves such that its distance from the origin is three times its distance from the x-axis.
If A (−1, 1) and B (2, 3) are two fixed points, find the locus of a point P, so that the area of ∆PAB = 8 sq. units.
A rod of length l slides between two perpendicular lines. Find the locus of the point on the rod which divides it in the ratio 1 : 2.
Find the locus of the mid-point of the portion of the line x cos α + y sin α = p which is intercepted between the axes.
If O is the origin and Q is a variable point on y2 = x, find the locus of the mid-point of OQ.
What does the equation (x − a)2 + (y − b)2 = r2 become when the axes are transferred to parallel axes through the point (a − c, b)?
Find what the following equation become when the origin is shifted to the point (1, 1).
x2 − y2 − 2x +2y = 0
Find what the following equation become when the origin is shifted to the point (1, 1).
xy − x − y + 1 = 0
To what point should the origin be shifted so that the equation x2 + xy − 3x − y + 2 = 0 does not contain any first degree term and constant term?
Find what the following equation become when the origin is shifted to the point (1, 1).
xy − x − y + 1 = 0
Find what the following equation become when the origin is shifted to the point (1, 1).
x2 − y2 − 2x + 2y = 0
Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: y2 + x2 − 4x − 8y + 3 = 0
Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 + y2 − 5x + 2y − 5 = 0
Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 − 12x + 4 = 0
Verify that the area of the triangle with vertices (4, 6), (7, 10) and (1, −2) remains invariant under the translation of axes when the origin is shifted to the point (−2, 1).
In Q.No. 1, write the distance between the circumcentre and orthocentre of ∆OAB.
Write the coordinates of the orthocentre of the triangle formed by points (8, 0), (4, 6) and (0, 0).
Three vertices of a parallelogram, taken in order, are (−1, −6), (2, −5) and (7, 2). Write the coordinates of its fourth vertex.
If the coordinates of the sides AB and AC of ∆ABC are (3, 5) and (−3, −3), respectively, then write the length of side BC.
Write the coordinates of the in-centre of the triangle with vertices at (0, 0), (5, 0) and (0, 12).
If the points (1, −1), (2, −1) and (4, −3) are the mid-points of the sides of a triangle, then write the coordinates of its centroid.