English

The Vertices of a Triangle Abc Are a (0, 0), B (2, −1) and C (9, 2). Find Cos B. - Mathematics

Advertisements
Advertisements

Question

The vertices of a triangle ABC are A (0, 0), B (2, −1) and C (9, 2). Find cos B.

Sum

Solution

We know that
\[\cos B = \frac{a^2 + c^2 - b^2}{2ac}\], where a = BC, b = CA and c = AB are the lengths of the sides of ∆ ABC
Thus,
\[a = BC = \sqrt{\left( 2 - 9 \right)^2 + \left( - 1 - 2 \right)^2} = \sqrt{49 + 9} = \sqrt{58}\]

\[b = AC = \sqrt{\left( 0 - 9 \right)^2 + \left( 0 - 2 \right)^2} = \sqrt{81 + 4} = \sqrt{85}\]
\[c = AB = \sqrt{\left( 2 - 0 \right)^2 + \left( - 1 - 0 \right)^2} = \sqrt{4 + 1} = \sqrt{5}\]
Using cosine formula in
∆ ABC, we get:
\[\cos B = \frac{a^2 + c^2 - b^2}{2ac}\]
\[\Rightarrow \cos B = \frac{58 + 5 - 85}{2\sqrt{58} \times \sqrt{5}} = - \frac{11}{\sqrt{290}}\]
shaalaa.com
Brief Review of Cartesian System of Rectanglar Co-ordinates
  Is there an error in this question or solution?
Chapter 22: Brief review of cartesian system of rectangular co-ordinates - Exercise 22.1 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 22 Brief review of cartesian system of rectangular co-ordinates
Exercise 22.1 | Q 2 | Page 13

RELATED QUESTIONS

If the line segment joining the points P (x1, y1) and Q (x2, y2) subtends an angle α at the origin O, prove that
OP · OQ cos α = x1 x2 + y1, y2


The points A (2, 0), B (9, 1), C (11, 6) and D (4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not.


The base of an equilateral triangle with side 2a lies along the y-axis, such that the mid-point of the base is at the origin. Find the vertices of the triangle.


Find the distance between P (x1, y1) and Q (x2, y2) when (i) PQ is parallel to the y-axis (ii) PQ is parallel to the x-axis.


Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).

 

Find the locus of a point equidistant from the point (2, 4) and the y-axis.

 

Find the equation of the locus of a point which moves such that the ratio of its distances from (2, 0) and (1, 3) is 5 : 4.

 

A point moves so that the difference of its distances from (ae, 0) and (−ae, 0) is 2a. Prove that the equation to its locus is \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]


Find the locus of a point which moves such that its distance from the origin is three times its distance from the x-axis.

 

A (5, 3), B (3, −2) are two fixed points; find the equation to the locus of a point P which moves so that the area of the triangle PAB is 9 units.


If A (−1, 1) and B (2, 3) are two fixed points, find the locus of a point P, so that the area of ∆PAB = 8 sq. units.


A rod of length l slides between two perpendicular lines. Find the locus of the point on the rod which divides it in the ratio 1 : 2.


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3x − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − x − y + 1 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − y2 − x + y = 0


To what point should the origin be shifted so that the equation x2 + xy − 3x − y + 2 = 0 does not contain any first degree term and constant term?


Verify that the area of the triangle with vertices (2, 3), (5, 7) and (− 3 − 1) remains invariant under the translation of axes when the origin is shifted to the point (−1, 3).


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3y2 − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − y2 − x + y = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms:  y2 + x2 − 4x − 8y + 3 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 + y2 − 5x + 2y − 5 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 − 12x + 4 = 0


In Q.No. 1, write the distance between the circumcentre and orthocentre of ∆OAB.

 

Three vertices of a parallelogram, taken in order, are (−1, −6), (2, −5) and (7, 2). Write the coordinates of its fourth vertex.

 

If the points (a, 0), (at12, 2at1) and (at22, 2at2) are collinear, write the value of t1 t2.

 

If the coordinates of the sides AB and AC of  ∆ABC are (3, 5) and (−3, −3), respectively, then write the length of side BC.

 

Write the area of the triangle with vertices at (a, b + c), (b, c + a) and (c, a + b).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×