English

Three Vertices of a Parallelogram, Taken in Order, Are (−1, −6), (2, −5) and (7, 2). Write the Coordinates of Its Fourth Vertex. - Mathematics

Advertisements
Advertisements

Question

Three vertices of a parallelogram, taken in order, are (−1, −6), (2, −5) and (7, 2). Write the coordinates of its fourth vertex.

 
Sum

Solution

Let \[A\left( - 1, - 6 \right), B\left( 2, - 5 \right)\text{ and }C\left( 7, 2 \right)\] be the vertices of the parallelogram ABCD.
Let the coordinates of D be (x, y).
Since, diagonals of a parallelogram bisect each other,
\[\frac{- 1 + 7}{2} = \frac{2 + x}{2}\text{ and }\frac{- 6 + 2}{2} = \frac{- 5 + y}{2}\]
\[ \Rightarrow x = 4\text{ and }y = 1\]"
Hence, the coordinates of the fourth vertex D are (4, 1).

shaalaa.com
Brief Review of Cartesian System of Rectanglar Co-ordinates
  Is there an error in this question or solution?
Chapter 22: Brief review of cartesian system of rectangular co-ordinates - Exercise 22.4 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 22 Brief review of cartesian system of rectangular co-ordinates
Exercise 22.4 | Q 4 | Page 21

RELATED QUESTIONS

If the line segment joining the points P (x1, y1) and Q (x2, y2) subtends an angle α at the origin O, prove that
OP · OQ cos α = x1 x2 + y1, y2


The vertices of a triangle ABC are A (0, 0), B (2, −1) and C (9, 2). Find cos B.


The points A (2, 0), B (9, 1), C (11, 6) and D (4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not.


Find the coordinates of the centre of the circle inscribed in a triangle whose vertices are (−36, 7), (20, 7) and (0, −8).


The base of an equilateral triangle with side 2a lies along the y-axis, such that the mid-point of the base is at the origin. Find the vertices of the triangle.


Find the distance between P (x1, y1) and Q (x2, y2) when (i) PQ is parallel to the y-axis (ii) PQ is parallel to the x-axis.


Find the locus of a point equidistant from the point (2, 4) and the y-axis.

 

Find the locus of a point which is equidistant from (1, 3) and the x-axis.

 

Find the locus of a point such that the line segments with end points (2, 0) and (−2, 0) subtend a right angle at that point.

 

If A (−1, 1) and B (2, 3) are two fixed points, find the locus of a point P, so that the area of ∆PAB = 8 sq. units.


A rod of length l slides between two perpendicular lines. Find the locus of the point on the rod which divides it in the ratio 1 : 2.


What does the equation (x − a)2 + (y − b)2 = r2 become when the axes are transferred to parallel axes through the point (a − c, b)?

 

Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3x − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − x − y + 1 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − y2 − x + y = 0


Verify that the area of the triangle with vertices (2, 3), (5, 7) and (− 3 − 1) remains invariant under the translation of axes when the origin is shifted to the point (−1, 3).


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3y2 − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − y2 − x + y = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 − y2 − 2x + 2y = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 + y2 − 5x + 2y − 5 = 0


Verify that the area of the triangle with vertices (4, 6), (7, 10) and (1, −2) remains invariant under the translation of axes when the origin is shifted to the point (−2, 1).


The vertices of a triangle are O (0, 0), A (a, 0) and B (0, b). Write the coordinates of its circumcentre.


Write the coordinates of the orthocentre of the triangle formed by points (8, 0), (4, 6) and (0, 0).


If the points (a, 0), (at12, 2at1) and (at22, 2at2) are collinear, write the value of t1 t2.

 

If the coordinates of the sides AB and AC of  ∆ABC are (3, 5) and (−3, −3), respectively, then write the length of side BC.

 

Write the coordinates of the circumcentre of a triangle whose centroid and orthocentre are at (3, 3) and (−3, 5), respectively.

 

Write the coordinates of the in-centre of the triangle with vertices at (0, 0), (5, 0) and (0, 12).


If the points (1, −1), (2, −1) and (4, −3) are the mid-points of the sides of a triangle, then write the coordinates of its centroid.


Write the area of the triangle with vertices at (a, b + c), (b, c + a) and (c, a + b).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×