English

Write the Coordinates of the Circumcentre of a Triangle Whose Centroid and Orthocentre Are at (3, 3) and (−3, 5), Respectively. - Mathematics

Advertisements
Advertisements

Question

Write the coordinates of the circumcentre of a triangle whose centroid and orthocentre are at (3, 3) and (−3, 5), respectively.

 
Sum

Solution

Let the coordinates of the circumcentre of the triangle be C(x, y).
Let the points O(-3, 5) and G(3, 3) represent the coordinates of the orthocentre and centroid, respectively.
We know that the centroid of a triangle divides the line joining the orthocentre and circumcentre in the ratio 2:1.
\[\therefore 3 = \frac{- 3 \times 1 + 2x}{3}\text{ and }3 = \frac{5 \times 1 + 2y}{3}\]
\[ \Rightarrow x = 6, y = 2\]
Hence, the coordinates of the circumcentre is (6, 2).

shaalaa.com
Brief Review of Cartesian System of Rectanglar Co-ordinates
  Is there an error in this question or solution?
Chapter 22: Brief review of cartesian system of rectangular co-ordinates - Exercise 22.4 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 22 Brief review of cartesian system of rectangular co-ordinates
Exercise 22.4 | Q 7 | Page 22

RELATED QUESTIONS

If the line segment joining the points P (x1, y1) and Q (x2, y2) subtends an angle α at the origin O, prove that
OP · OQ cos α = x1 x2 + y1, y2


Four points A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are given in such a way that \[\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}\]. Find x.


The points A (2, 0), B (9, 1), C (11, 6) and D (4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not.


Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).

 

Find the locus of a point equidistant from the point (2, 4) and the y-axis.

 

A point moves so that the difference of its distances from (ae, 0) and (−ae, 0) is 2a. Prove that the equation to its locus is \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]


Find the locus of a point such that the sum of its distances from (0, 2) and (0, −2) is 6.

 

Find the locus of a point which is equidistant from (1, 3) and the x-axis.

 

Find the locus of a point which moves such that its distance from the origin is three times its distance from the x-axis.

 

A (5, 3), B (3, −2) are two fixed points; find the equation to the locus of a point P which moves so that the area of the triangle PAB is 9 units.


Find the locus of a point such that the line segments with end points (2, 0) and (−2, 0) subtend a right angle at that point.

 

If A (−1, 1) and B (2, 3) are two fixed points, find the locus of a point P, so that the area of ∆PAB = 8 sq. units.


A rod of length l slides between two perpendicular lines. Find the locus of the point on the rod which divides it in the ratio 1 : 2.


Find the locus of the mid-point of the portion of the line x cos α + y sin α = p which is intercepted between the axes.

 

If O is the origin and Q is a variable point on y2 = x, find the locus of the mid-point of OQ.

 

Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3x − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
 x2 − y2 − 2x +2y = 0


Verify that the area of the triangle with vertices (2, 3), (5, 7) and (− 3 − 1) remains invariant under the translation of axes when the origin is shifted to the point (−1, 3).


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3y2 − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − y2 − x + y = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms:  y2 + x2 − 4x − 8y + 3 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 − 12x + 4 = 0


The vertices of a triangle are O (0, 0), A (a, 0) and B (0, b). Write the coordinates of its circumcentre.


In Q.No. 1, write the distance between the circumcentre and orthocentre of ∆OAB.

 

Write the coordinates of the orthocentre of the triangle formed by points (8, 0), (4, 6) and (0, 0).


Three vertices of a parallelogram, taken in order, are (−1, −6), (2, −5) and (7, 2). Write the coordinates of its fourth vertex.

 

If the points (a, 0), (at12, 2at1) and (at22, 2at2) are collinear, write the value of t1 t2.

 

Write the coordinates of the in-centre of the triangle with vertices at (0, 0), (5, 0) and (0, 12).


Write the area of the triangle with vertices at (a, b + c), (b, c + a) and (c, a + b).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×