English

Find What the Following Equation Become When the Origin is Shifted to the Point (1, 1). X2 + Xy − 3y2 − Y + 2 = 0 - Mathematics

Advertisements
Advertisements

Question

Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3y2 − y + 2 = 0

Sum

Solution

The given equation is x2 + xy − 3y2 − y + 2 = 0.
Substituting \[x = X + 1, y = Y + 1\] in the given equation, we get:
\[\left( X + 1 \right)^2 + \left( X + 1 \right)\left( Y + 1 \right) - 3 \left( Y + 1 \right)^2 - \left( Y + 1 \right) + 2 = 0\]
\[ \Rightarrow X^2 + 1 + 2X + XY + X + Y + 1 - 3 Y^2 - 3 - 6Y - Y - 1 + 2 = 0\]
\[ \Rightarrow X^2 + XY - 3 Y^2 + 3X - 6Y = 0\]
Hence, the transformed equation is \[x^2 + xy - 3 y^2 + 3x - 6y = 0\]

shaalaa.com
Brief Review of Cartesian System of Rectanglar Co-ordinates
  Is there an error in this question or solution?
Chapter 22: Brief review of cartesian system of rectangular co-ordinates - Exercise 22.3 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 22 Brief review of cartesian system of rectangular co-ordinates
Exercise 22.3 | Q 6.1 | Page 21

RELATED QUESTIONS

If the line segment joining the points P (x1, y1) and Q (x2, y2) subtends an angle α at the origin O, prove that
OP · OQ cos α = x1 x2 + y1, y2


Four points A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are given in such a way that \[\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}\]. Find x.


Find the coordinates of the centre of the circle inscribed in a triangle whose vertices are (−36, 7), (20, 7) and (0, −8).


The base of an equilateral triangle with side 2a lies along the y-axis, such that the mid-point of the base is at the origin. Find the vertices of the triangle.


Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).

 

Find the locus of a point equidistant from the point (2, 4) and the y-axis.

 

Find the equation of the locus of a point which moves such that the ratio of its distances from (2, 0) and (1, 3) is 5 : 4.

 

Find the locus of a point such that the sum of its distances from (0, 2) and (0, −2) is 6.

 

Find the locus of a point which is equidistant from (1, 3) and the x-axis.

 

Find the locus of a point which moves such that its distance from the origin is three times its distance from the x-axis.

 

Find the locus of a point such that the line segments with end points (2, 0) and (−2, 0) subtend a right angle at that point.

 

If A (−1, 1) and B (2, 3) are two fixed points, find the locus of a point P, so that the area of ∆PAB = 8 sq. units.


A rod of length l slides between two perpendicular lines. Find the locus of the point on the rod which divides it in the ratio 1 : 2.


If O is the origin and Q is a variable point on y2 = x, find the locus of the mid-point of OQ.

 

Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3x − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − x − y + 1 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − y2 − x + y = 0


Verify that the area of the triangle with vertices (2, 3), (5, 7) and (− 3 − 1) remains invariant under the translation of axes when the origin is shifted to the point (−1, 3).


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − y2 − x + y = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
 xy − x − y + 1 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 − y2 − 2x + 2y = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms:  y2 + x2 − 4x − 8y + 3 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 − 12x + 4 = 0


Verify that the area of the triangle with vertices (4, 6), (7, 10) and (1, −2) remains invariant under the translation of axes when the origin is shifted to the point (−2, 1).


In Q.No. 1, write the distance between the circumcentre and orthocentre of ∆OAB.

 

Three vertices of a parallelogram, taken in order, are (−1, −6), (2, −5) and (7, 2). Write the coordinates of its fourth vertex.

 

If the coordinates of the sides AB and AC of  ∆ABC are (3, 5) and (−3, −3), respectively, then write the length of side BC.

 

Write the area of the triangle with vertices at (a, b + c), (b, c + a) and (c, a + b).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×