English

Verify that the area of the triangle with vertices (2, 3), (5, 7) and (− 3 − 1) remains invariant under the translation of axes when the origin is shifted to the point (−1, 3). - Mathematics

Advertisements
Advertisements

Question

Verify that the area of the triangle with vertices (2, 3), (5, 7) and (− 3 − 1) remains invariant under the translation of axes when the origin is shifted to the point (−1, 3).

Sum

Solution

Let A(2, 3), B(5, 7) and C(− 3 − 1) represent the vertices of the triangle.
\[\therefore Area of ∆ ABC = \frac{1}{2}\left| x_1 \left( y_2 - y_3 \right) + x_2 \left( y_3 - y_1 \right) + x_3 \left( y_1 - y_2 \right) \right|\]
\[ = \frac{1}{2}\left| 2\left( 7 + 1 \right) + 5\left( - 1 - 3 \right) - 3\left( 3 - 7 \right) \right|\]
\[ = \frac{1}{2}\left| 16 - 20 + 12 \right|\]
\[ = 4\]
Since the origin is shifted to the point (−1, 3), the vertices of the ∆ABC will be \[A' \left( 2 + 1, 3 - 3 \right), B' \left( 5 + 1, 7 - 3 \right),\text{ and }C' \left( - 3 + 1, - 1 - 3 \right)\]
\[\text{ or }A' \left( 3, 0 \right), B' \left( 6, 4 \right),\text{ and }C' \left( - 2, - 4 \right)\]
Now, area of ∆A'B'C' :
\[\frac{1}{2}\left| x_1 \left( y_2 - y_3 \right) + x_2 \left( y_3 - y_1 \right) + x_3 \left( y_1 - y_2 \right) \right|\]
\[ = \frac{1}{2}\left| 3\left( 4 + 4 \right) + 6\left( - 4 - 0 \right) - 2\left( 0 - 4 \right) \right|\]
\[ = 4\]

Hence, area of the triangle remains invariant.

shaalaa.com
Brief Review of Cartesian System of Rectanglar Co-ordinates
  Is there an error in this question or solution?
Chapter 22: Brief review of cartesian system of rectangular co-ordinates - Exercise 22.3 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 22 Brief review of cartesian system of rectangular co-ordinates
Exercise 22.3 | Q 5 | Page 21

RELATED QUESTIONS

Find the coordinates of the centre of the circle inscribed in a triangle whose vertices are (−36, 7), (20, 7) and (0, −8).


The base of an equilateral triangle with side 2a lies along the y-axis, such that the mid-point of the base is at the origin. Find the vertices of the triangle.


Find the distance between P (x1, y1) and Q (x2, y2) when (i) PQ is parallel to the y-axis (ii) PQ is parallel to the x-axis.


Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).

 

Find the locus of a point equidistant from the point (2, 4) and the y-axis.

 

Find the equation of the locus of a point which moves such that the ratio of its distances from (2, 0) and (1, 3) is 5 : 4.

 

Find the locus of a point which is equidistant from (1, 3) and the x-axis.

 

Find the locus of a point which moves such that its distance from the origin is three times its distance from the x-axis.

 

If A (−1, 1) and B (2, 3) are two fixed points, find the locus of a point P, so that the area of ∆PAB = 8 sq. units.


What does the equation (x − a)2 + (y − b)2 = r2 become when the axes are transferred to parallel axes through the point (a − c, b)?

 

What does the equation (a − b) (x2 + y2) −2abx = 0 become if the origin is shifted to the point \[\left( \frac{ab}{a - b}, 0 \right)\] without rotation?


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3x − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
 x2 − y2 − 2x +2y = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − y2 − x + y = 0


To what point should the origin be shifted so that the equation x2 + xy − 3x − y + 2 = 0 does not contain any first degree term and constant term?


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3y2 − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − y2 − x + y = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
 xy − x − y + 1 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 − y2 − 2x + 2y = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms:  y2 + x2 − 4x − 8y + 3 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 + y2 − 5x + 2y − 5 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 − 12x + 4 = 0


In Q.No. 1, write the distance between the circumcentre and orthocentre of ∆OAB.

 

Write the coordinates of the orthocentre of the triangle formed by points (8, 0), (4, 6) and (0, 0).


If the coordinates of the sides AB and AC of  ∆ABC are (3, 5) and (−3, −3), respectively, then write the length of side BC.

 

Write the coordinates of the in-centre of the triangle with vertices at (0, 0), (5, 0) and (0, 12).


If the points (1, −1), (2, −1) and (4, −3) are the mid-points of the sides of a triangle, then write the coordinates of its centroid.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×