हिंदी

If O is the Origin and Q is a Variable Point on Y2 = X, Find the Locus of the Mid-point of Oq. - Mathematics

Advertisements
Advertisements

प्रश्न

If O is the origin and Q is a variable point on y2 = x, find the locus of the mid-point of OQ.

 
योग

उत्तर

Let the coordinates of Q be (a, b), which lies on the parabola

\[y^2 = x\]
\[\Rightarrow b^2 = a\]  ... (1)
Let P(h, k) be the mid-point of OQ.
Now,
\[h = \frac{0 + a}{2}\text{ and }k = \frac{0 + b}{2}\]
\[ \Rightarrow a = 2h\text{ and }b = 2k\]
Putting a = 2h and b = 2k in equation (1), we get:
\[\left( 2k \right)^2 = 2h\]
\[ \Rightarrow 2 k^2 = h\]
Hence, the locus of the mid-point of OQ is \[2 y^2 = x\]
shaalaa.com
Brief Review of Cartesian System of Rectanglar Co-ordinates
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Brief review of cartesian system of rectangular co-ordinates - Exercise 22.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 22 Brief review of cartesian system of rectangular co-ordinates
Exercise 22.2 | Q 12 | पृष्ठ १८

संबंधित प्रश्न

If the line segment joining the points P (x1, y1) and Q (x2, y2) subtends an angle α at the origin O, prove that
OP · OQ cos α = x1 x2 + y1, y2


The vertices of a triangle ABC are A (0, 0), B (2, −1) and C (9, 2). Find cos B.


Four points A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are given in such a way that \[\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}\]. Find x.


The points A (2, 0), B (9, 1), C (11, 6) and D (4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not.


Find the coordinates of the centre of the circle inscribed in a triangle whose vertices are (−36, 7), (20, 7) and (0, −8).


Find the distance between P (x1, y1) and Q (x2, y2) when (i) PQ is parallel to the y-axis (ii) PQ is parallel to the x-axis.


Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).

 

A point moves so that the difference of its distances from (ae, 0) and (−ae, 0) is 2a. Prove that the equation to its locus is \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]


Find the locus of a point such that the sum of its distances from (0, 2) and (0, −2) is 6.

 

Find the locus of a point which moves such that its distance from the origin is three times its distance from the x-axis.

 

Find the locus of a point such that the line segments with end points (2, 0) and (−2, 0) subtend a right angle at that point.

 

A rod of length l slides between two perpendicular lines. Find the locus of the point on the rod which divides it in the ratio 1 : 2.


Find the locus of the mid-point of the portion of the line x cos α + y sin α = p which is intercepted between the axes.

 

What does the equation (x − a)2 + (y − b)2 = r2 become when the axes are transferred to parallel axes through the point (a − c, b)?

 

What does the equation (a − b) (x2 + y2) −2abx = 0 become if the origin is shifted to the point \[\left( \frac{ab}{a - b}, 0 \right)\] without rotation?


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3x − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − x − y + 1 = 0


To what point should the origin be shifted so that the equation x2 + xy − 3x − y + 2 = 0 does not contain any first degree term and constant term?


Verify that the area of the triangle with vertices (2, 3), (5, 7) and (− 3 − 1) remains invariant under the translation of axes when the origin is shifted to the point (−1, 3).


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3y2 − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − y2 − x + y = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
 xy − x − y + 1 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms:  y2 + x2 − 4x − 8y + 3 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 + y2 − 5x + 2y − 5 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 − 12x + 4 = 0


Verify that the area of the triangle with vertices (4, 6), (7, 10) and (1, −2) remains invariant under the translation of axes when the origin is shifted to the point (−2, 1).


The vertices of a triangle are O (0, 0), A (a, 0) and B (0, b). Write the coordinates of its circumcentre.


Write the coordinates of the orthocentre of the triangle formed by points (8, 0), (4, 6) and (0, 0).


Three vertices of a parallelogram, taken in order, are (−1, −6), (2, −5) and (7, 2). Write the coordinates of its fourth vertex.

 

Write the coordinates of the in-centre of the triangle with vertices at (0, 0), (5, 0) and (0, 12).


Write the area of the triangle with vertices at (a, b + c), (b, c + a) and (c, a + b).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×