हिंदी

Find the Mean, Variance and Standard Deviation for the Data: 2, 4, 5, 6, 8, 17. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the mean, variance and standard deviation for the data:

 2, 4, 5, 6, 8, 17.

उत्तर

2,4,5,6,8,17

\[\text{ Mean } = \bar{ X } = \frac{2 + 4 + 5 + 6 + 8 + 17}{6} = \frac{42}{6} = 7\]

\[x_i\]
\[\left( x_i - X \right) = \left( x_i - 7 \right)\]
\[\left( x_i - 7 \right)^2\]
2 -5 25
4 -3 9
5 -2 4
6 -1 1
8 1 1
17 10 100
   
\[\sum^6_{i = 1} \left( x_i - X \right)^2 = 140\]

 

n =6

\[\text{ Variance } (X) = \frac{\sum^6_{i = 1} \left( x_i - X \right)^2}{n}\]

\[ = \frac{140}{6}\]

\[ = 23 . 33\]

\[\text{ Standard deviation } = \sqrt{\text{ Variance }(X}) \]

\[ = \sqrt{23 . 33}\]

\[ = 4 . 83\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 32: Statistics - Exercise 32.4 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 32 Statistics
Exercise 32.4 | Q 1.1 | पृष्ठ २८

संबंधित प्रश्न

Find the mean and variance for the first n natural numbers.


Find the mean and variance for the data.

xi 6 10 14 18 24 28 30
fi 2 4 7 12 8 4 3

Find the mean and variance for the data.

xi 92 93 97 98 102 104 109
fi 3 2 3 2 6 3 3

The sum and sum of squares corresponding to length (in cm) and weight (in gm) of 50 plant products are given below:

`sum_(i-1)^50 x_i = 212, sum_(i=1)^50 x_i^2 = 902.8, sum_(i=1)^50 y_i = 261, sum_(i = 1)^50 y_i^2 = 1457.6`

Which is more varying, the length or weight?

 

The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

  1. If wrong item is omitted.
  2. If it is replaced by 12.

The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.


Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.

 

The variance of 20 observations is 5. If each observation is multiplied by 2, find the variance of the resulting observations.

 

The mean and standard deviation of 6 observations are 8 and 4 respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.


For a group of 200 candidates, the mean and standard deviations of scores were found to be 40 and 15 respectively. Later on it was discovered that the scores of 43 and 35 were misread as 34 and 53 respectively. Find the correct mean and standard deviation.

 

The mean and standard deviation of 100 observations were calculated as 40 and 5.1 respectively by a student who took by mistake 50 instead of 40 for one observation. What are the correct mean and standard deviation?


Show that the two formulae for the standard deviation of ungrouped data 

\[\sigma = \sqrt{\frac{1}{n} \sum \left( x_i - X \right)^2_{}}\] and 

\[\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - X^2_{}}\]  are equivalent, where \[X = \frac{1}{n}\sum_{} x_i\]

 

 

Find the standard deviation for the following distribution:

x : 4.5 14.5 24.5 34.5 44.5 54.5 64.5
f : 1 5 12 22 17 9 4

Find the standard deviation for the following data:

x : 3 8 13 18 23
f : 7 10 15 10 6

Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.      


Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?


From the data given below state which group is more variable, G1 or G2?

Marks 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Group G1 9 17 32 33 40 10 9
Group G2 10 20 30 25 43 15 7

In a series of 20 observations, 10 observations are each equal to k and each of the remaining half is equal to − k. If the standard deviation of the observations is 2, then write the value of k.


If each observation of a raw data whose standard deviation is σ is multiplied by a, then write the S.D. of the new set of observations.

 

The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is 


Let x1x2, ..., xn be n observations. Let  \[y_i = a x_i + b\]  for i = 1, 2, 3, ..., n, where a and b are constants. If the mean of \[x_i 's\]  is 48 and their standard deviation is 12, the mean of \[y_i 's\]  is 55 and standard deviation of \[y_i 's\]  is 15, the values of a and are 

 
 
 
   

Life of bulbs produced by two factories A and B are given below:

Length of life
(in hours)
Factory A
(Number of bulbs)
Factory B
(Number of bulbs)
550 – 650 10 8
650 – 750 22 60
750 – 850 52 24
850 – 950 20 16
950 – 1050 16 12
  120 120

The bulbs of which factory are more consistent from the point of view of length of life?


The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.


Let x1, x2, ..., xn be n observations and `barx` be their arithmetic mean. The formula for the standard deviation is given by ______.


Let x1, x2, x3, x4, x5 be the observations with mean m and standard deviation s. The standard deviation of the observations kx1, kx2, kx3, kx4, kx5 is ______.


Let x1, x2, ... xn be n observations. Let wi = lxi + k for i = 1, 2, ...n, where l and k are constants. If the mean of xi’s is 48 and their standard deviation is 12, the mean of wi’s is 55 and standard deviation of wi’s is 15, the values of l and k should be ______.


Standard deviations for first 10 natural numbers is ______.


The standard deviation is ______to the mean deviation taken from the arithmetic mean.


The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×