हिंदी

Calculate Mean Deviation from the Median of the Following Data: Class Interval: 0–6 6–12 12–18 18–24 24–30 Frequency 4 5 3 6 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Calculate mean deviation from the median of the following data: 

Class interval: 0–6 6–12 12–18 18–24 24–30
Frequency 4 5 3 6 2

उत्तर

Calculation of mean deviation about the median. 

Class Interval Mid-Values
(xi)
Frequency
(fi)
Cummulative
Frequency (c.f.)
 

\[\left| x_i - 14 \right|\]
 

\[f_i \left| x_i - 14 \right|\]
0–6 3 4 4 11 44
6–12 9 5 9 5 25
12–18 15 3 12 1 3
18–24 21 6 18 7 42
24–30 27 2 20 13 26
    N = 20    
 

\[\sum f_i| x_i - 14 | = 140\]

Here, N = 20. So,

\[\frac{N}{2} = 10\] The cummulative frequency just greater than \[\frac{N}{2}\]  is 12. Thus, 12–18 is the median class.
 
Now, l = 12, h = 6, f = 3 and F = 9
\[\therefore \text{ Median } = l + \frac{\frac{N}{2} - F}{f} \times h = 12 + \left( \frac{10 - 9}{3} \right) \times 6 = 14\]
Now,

Mean deviation about median = \[\frac{1}{N}$\sum_{} f_i \left| x_i - 14 \right| = \frac{1}{20} \times 140 = 7\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 32: Statistics - Exercise 32.3 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 32 Statistics
Exercise 32.3 | Q 8 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the mean deviation about the median for the data.

36, 72, 46, 42, 60, 45, 53, 46, 51, 49


Find the mean deviation about the mean for the data.

Income per day in ₹ Number of persons
0-100 4
100-200 8
200-300 9
300-400 10
400-500 7
500-600 5
600-700 4
700-800 3

Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age Number
16 - 20 5
21 - 25 6
26 - 30 12
31 - 35 14
36 - 40 26
41 - 45 12
46 - 50 16
51 - 55 9

Calculate the mean deviation about the median of the observation:

 22, 24, 30, 27, 29, 31, 25, 28, 41, 42


Calculate the mean deviation from the mean for the  data:

 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


Calculate the mean deviation from the mean for the  data:

(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49

 

Calculate the mean deviation from the mean for the  data:

 38, 70, 48, 40, 42, 55, 63, 46, 54, 44a


Calculate the mean deviation of the following income groups of five and seven members from their medians:

I
Income in Rs.
II
Income in Rs.
4000
4200
4400
4600
4800

 
 300
4000
4200
4400
4600
4800
5800

The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2 

Find mean deviation from the mean also.

 

 


In 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 find the number of observations lying between

\[\bar { X } \]  − M.D. and

\[\bar { X } \]   + M.D, where M.D. is the mean deviation from the mean.


Find the mean deviation from the mean for the data:

xi 10 30 50 70 90
fi 4 24 28 16 8

Find the mean deviation from the mean for the data:

Size 1 3 5 7 9 11 13 15
Frequency 3 3 4 14 7 4 3 4

Find the mean deviation from the median for the  data:

xi 15 21 27 30 35
fi 3 5 6 7 8

 


Find the mean deviation from the median for the data: 

xi 74 89 42 54 91 94 35
fi 20 12 2 4 5 3 4

Find the mean deviation from the mean for the data:

Classes 95-105 105-115 115-125 125-135 135-145 145-155
Frequencies 9 13 16 26 30 12

 


The age distribution of 100 life-insurance policy holders is as follows:

Age (on nearest birth day) 17-19.5 20-25.5 26-35.5 36-40.5 41-50.5 51-55.5 56-60.5 61-70.5
No. of persons 5 16 12 26 14 12 6 5

Calculate the mean deviation from the median age


Find the mean deviation from the mean and from median of the following distribution:

Marks 0-10 10-20 20-30 30-40 40-50
No. of students 5 8 15 16 6

Calculate the mean deviation about the mean for the following frequency distribution:
 

Class interval: 0–4 4–8 8–12 12–16 16–20
Frequency 4 6 8 5 2

The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.

 

The mean deviation for n observations \[x_1 , x_2 , . . . , x_n\]  from their mean \[\bar{X} \]  is given by

 
  

Find the mean deviation about the median of the following distribution:

Marks obtained 10 11 12 14 15
No. of students 2 3 8 3 4

Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.


Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.


Find the mean and variance of the frequency distribution given below:

`x` 1 ≤ x < 3 3 ≤ x < 5 5 ≤ x < 7 7 ≤ x < 10
`f` 6 4 5 1

Calculate the mean deviation from the median of the following data:

Class interval 0 – 6 6 – 12 12 – 18 18 – 24 24 – 30
Frequency 4 5 3 6 2

The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is ______.


When tested, the lives (in hours) of 5 bulbs were noted as follows: 1357, 1090, 1666, 1494, 1623 
The mean deviations (in hours) from their mean is ______.


The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is ______.


Let X = {x ∈ N: 1 ≤ x ≤ 17} and Y = {ax + b: x ∈ X and a, b ∈ R, a > 0}. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to ______.


Find the mean deviation about the mean for the data.

xi 5 10 15 20 25
fi 7 4 6 3 5

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×