हिंदी

The age distribution of 100 life-insurance policy holders is as follows:Age (on nearest birth day)17-19.520-25.526-35.536-40.541-50.551-55.556-60.561-70.5No. of persons5161226141265 - Mathematics

Advertisements
Advertisements

प्रश्न

The age distribution of 100 life-insurance policy holders is as follows:

Age (on nearest birth day) 17-19.5 20-25.5 26-35.5 36-40.5 41-50.5 51-55.5 56-60.5 61-70.5
No. of persons 5 16 12 26 14 12 6 5

Calculate the mean deviation from the median age

योग

उत्तर

To make this function continuous, we need to subtract 0.25 from the lower limit and add 0.25 to the upper limit of the class.

Age  Number of People
\[f_i\]
Cumulative Frequency   Midpoints
\[x_i\]
\[\left| d_i \right| = \left| x_i - 38 . 63 \right|\] 
\[f_i \left| d_i \right|\]
16.75−19.75
 
5 5 18.25 20.38 101.9
19.75−25.75 16 21 22.75 15.88 254.08
 
25.75−35.75 12 33 30.75 7.88 94.56
 
35.75−40.75 26 59 38.25 0.38 9.88
  
40.75−50.75 14 73 45.75 7.12 99.68
 
50.75−55.75 12 85 53.25 14.62 175.44
 
55.75−60.75 6 91 58.25 19.62 117.72
 
60.75−70.75 5 96 65.75 27.12 135.6
 
 
\[N = \sum ^8 _{i = 1} f_i = 96\]
     
\[\sum^8_{i = 1} f_i \left| d_i \right| = 988 . 86\]

\[N = 96\]
\[ \therefore \frac{N}{2} = 48\]
\[\text{ The cumulative frequency just greater than } \frac{N}{2} = 38\text{ is 59 and the corresponding class is }  35 . 75 - 40 . 75 . \]
\[\text{ Thus, the median class is 35 . 75 - 40 . 75 } \]
\[l = 35 . 75, f = 26, F = 33, h = 5\]
\[\text{ Median } = l + \frac{\frac{N}{2} - F}{f} \times h\]
\[ = 35 . 75 + \frac{\left( 48 - 33 \right)}{26} \times 5 \]
\[ = 35 . 75 + 2 . 88\]
\[ = 38 . 63\]
\[\text{ Mean deviation from the median }  = \frac{\mathit{\sum^8_{i = 1}} f_i \left| d_i \right|}{N}\]
\[ = \frac{988 . 86}{96}\]
\[ = 10 . 30\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 32: Statistics - Exercise 32.3 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 32 Statistics
Exercise 32.3 | Q 4 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the mean deviation about the mean for the data.

4, 7, 8, 9, 10, 12, 13, 17


Find the mean deviation about the mean for the data.

38, 70, 48, 40, 42, 55, 63, 46, 54, 44


Find the mean deviation about the median for the data.

13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


Find the mean deviation about the mean for the data.

xi 10 30 50 70 90
fi 4 24 28 16 8

Find the mean deviation about the median for the data.

xi 15 21 27 30 35
fi 3 5 6 7 8

Find the mean deviation about the mean for the data.

Income per day in ₹ Number of persons
0-100 4
100-200 8
200-300 9
300-400 10
400-500 7
500-600 5
600-700 4
700-800 3

Calculate the mean deviation about the median of the observation:

3011, 2780, 3020, 2354, 3541, 4150, 5000


Calculate the mean deviation about the median of the observation:

 38, 70, 48, 34, 42, 55, 63, 46, 54, 44


Calculate the mean deviation about the median of the observation:

 34, 66, 30, 38, 44, 50, 40, 60, 42, 51


Calculate the mean deviation about the median of the observation:

 38, 70, 48, 34, 63, 42, 55, 44, 53, 47

 

Calculate the mean deviation from the mean for the data: 

 4, 7, 8, 9, 10, 12, 13, 17


Calculate the mean deviation from the mean for the  data:

 38, 70, 48, 40, 42, 55, 63, 46, 54, 44a


The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
 Find mean deviation from median


The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2 

Find mean deviation from the mean also.

 

 


Find the mean deviation from the mean for the data:

xi 10 30 50 70 90
fi 4 24 28 16 8

Find the mean deviation from the mean for the data:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Find the mean deviation from the mean for the data:

Size 1 3 5 7 9 11 13 15
Frequency 3 3 4 14 7 4 3 4

Find the mean deviation from the median for the  data:

xi 15 21 27 30 35
fi 3 5 6 7 8

 


Find the mean deviation from the mean and from median of the following distribution:

Marks 0-10 10-20 20-30 30-40 40-50
No. of students 5 8 15 16 6

Calculate mean deviation about median age for the age distribution of 100 persons given below:

Age: 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55
Number of persons 5 6 12 14 26 12 16 9

Calculate the mean deviation about the mean for the following frequency distribution:
 

Class interval: 0–4 4–8 8–12 12–16 16–20
Frequency 4 6 8 5 2

The mean deviation of the numbers 3, 4, 5, 6, 7 from the mean is


The mean deviation for n observations \[x_1 , x_2 , . . . , x_n\]  from their mean \[\bar{X} \]  is given by

 
  

Let \[x_1 , x_2 , . . . , x_n\]  be n observations and  \[X\]  be their arithmetic mean. The standard deviation is given by

 

The mean deviation of the data 2, 9, 9, 3, 6, 9, 4 from the mean is ______.


Find the mean deviation about the mean of the distribution:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.


Calculate the mean deviation about the mean for the following frequency distribution:

Class interval 0 – 4 4 – 8 8 – 12 12 – 16 16 – 20
Frequency 4 6 8 5 2

While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.


Mean deviation for n observations x1, x2, ..., xn from their mean `barx` is given by ______.


The mean and variance of seven observations are 8 and 16, respectively. If 5 of the observations are 2, 4, 10, 12, 14, then the product of the remaining two observations is ______.


If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×