हिंदी

The Mean Deviation of the Numbers 3, 4, 5, 6, 7 from the Mean is (A) 25 (B) 5 (C) 1.2 (D) 0 - Mathematics

Advertisements
Advertisements

प्रश्न

The mean deviation of the numbers 3, 4, 5, 6, 7 from the mean is

विकल्प

  • 25

  •  5

  • 1.2

  • 0

     
MCQ

उत्तर

1.2

\[\text{ Mean }  \left( X \right) = \frac{3 + 4 + 5 + 6 + 7}{5}\]

\[ = \frac{25}{5}\]

\[ = 5\]

Taking the absolute value of deviation of each term from the mean, we get:

\[MD = \frac{\left| (3 - 5) \right| + \left| (4 - 5) \right| + \left| (5 - 5) \right| + \left| (6 - 5) \right| + \left| (7 - 5) \right|}{5}\]

\[ = \frac{2 + 1 + 0 + 1 + 2}{5}\]

\[ = \frac{6}{5}\]

\[ = 1 . 2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 32: Statistics - Exercise 32.9 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 32 Statistics
Exercise 32.9 | Q 9 | पृष्ठ ५१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the mean deviation about the mean for the data.

4, 7, 8, 9, 10, 12, 13, 17


Find the mean deviation about the median for the data.

xi 15 21 27 30 35
fi 3 5 6 7 8

Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age Number
16 - 20 5
21 - 25 6
26 - 30 12
31 - 35 14
36 - 40 26
41 - 45 12
46 - 50 16
51 - 55 9

Calculate the mean deviation about the median of the observation:

 38, 70, 48, 34, 42, 55, 63, 46, 54, 44


Calculate the mean deviation from the mean for the  data:

 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


Calculate the mean deviation from the mean for the  data:

 38, 70, 48, 40, 42, 55, 63, 46, 54, 44a


Calculate the mean deviation of the following income groups of five and seven members from their medians:

I
Income in Rs.
II
Income in Rs.
4000
4200
4400
4600
4800

 
 300
4000
4200
4400
4600
4800
5800

The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2 

Find mean deviation from the mean also.

 

 


In  22, 24, 30, 27, 29, 31, 25, 28, 41, 42 find the number of observations lying between 

\[\bar { X } \]  − M.D. and

\[\bar { X } \]   + M.D, where M.D. is the mean deviation from the mean.


Find the mean deviation from the mean for the data:

xi 5 10 15 20 25
fi 7 4 6 3 5

Find the mean deviation from the median for the  data:

xi 15 21 27 30 35
fi 3 5 6 7 8

 


Compute the mean deviation from the median of the following distribution:

Class 0-10 10-20 20-30 30-40 40-50
Frequency 5 10 20 5 10

Find the mean deviation from the mean for the data:

Classes 0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800
Frequencies 4 8 9 10 7 5 4 3

 


Find the mean deviation from the mean for the data:

Classes 95-105 105-115 115-125 125-135 135-145 145-155
Frequencies 9 13 16 26 30 12

 


Compute mean deviation from mean of the following distribution:

Mark 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
No. of students 8 10 15 25 20 18 9 5

The age distribution of 100 life-insurance policy holders is as follows:

Age (on nearest birth day) 17-19.5 20-25.5 26-35.5 36-40.5 41-50.5 51-55.5 56-60.5 61-70.5
No. of persons 5 16 12 26 14 12 6 5

Calculate the mean deviation from the median age


Find the mean deviation from the mean and from median of the following distribution:

Marks 0-10 10-20 20-30 30-40 40-50
No. of students 5 8 15 16 6

Calculate mean deviation about median age for the age distribution of 100 persons given below:

Age: 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55
Number of persons 5 6 12 14 26 12 16 9

Calculate the mean deviation about the mean for the following frequency distribution:
 

Class interval: 0–4 4–8 8–12 12–16 16–20
Frequency 4 6 8 5 2

The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.

 

The mean deviation from the median is


The mean deviation of the series aa + da + 2d, ..., a + 2n from its mean is


The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is


The mean deviation for n observations \[x_1 , x_2 , . . . , x_n\]  from their mean \[\bar{X} \]  is given by

 
  

Let \[x_1 , x_2 , . . . , x_n\]  be n observations and  \[X\]  be their arithmetic mean. The standard deviation is given by

 

The mean deviation of the data 2, 9, 9, 3, 6, 9, 4 from the mean is ______.


Find the mean deviation about the mean of the distribution:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.


The sum of squares of the deviations of the values of the variable is ______ when taken about their arithmetic mean.


The mean and variance of seven observations are 8 and 16, respectively. If 5 of the observations are 2, 4, 10, 12, 14, then the product of the remaining two observations is ______.


If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×