English

The Mean Deviation of the Numbers 3, 4, 5, 6, 7 from the Mean is (A) 25 (B) 5 (C) 1.2 (D) 0 - Mathematics

Advertisements
Advertisements

Question

The mean deviation of the numbers 3, 4, 5, 6, 7 from the mean is

Options

  • 25

  •  5

  • 1.2

  • 0

     
MCQ

Solution

1.2

\[\text{ Mean }  \left( X \right) = \frac{3 + 4 + 5 + 6 + 7}{5}\]

\[ = \frac{25}{5}\]

\[ = 5\]

Taking the absolute value of deviation of each term from the mean, we get:

\[MD = \frac{\left| (3 - 5) \right| + \left| (4 - 5) \right| + \left| (5 - 5) \right| + \left| (6 - 5) \right| + \left| (7 - 5) \right|}{5}\]

\[ = \frac{2 + 1 + 0 + 1 + 2}{5}\]

\[ = \frac{6}{5}\]

\[ = 1 . 2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Statistics - Exercise 32.9 [Page 51]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 32 Statistics
Exercise 32.9 | Q 9 | Page 51

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the mean deviation about the mean for the data.

38, 70, 48, 40, 42, 55, 63, 46, 54, 44


Find the mean deviation about the mean for the data.

xi 5 10 15 20 25
fi 7 4 6 3 5

Find the mean deviation about the mean for the data.

xi 10 30 50 70 90
fi 4 24 28 16 8

Find the mean deviation about the median for the data.

xi 5 7 9 10 12 15
fi 8 6 2 2 2 6

Find the mean deviation about the median for the data.

xi 15 21 27 30 35
fi 3 5 6 7 8

Find the mean deviation about the mean for the data.

Income per day in ₹ Number of persons
0-100 4
100-200 8
200-300 9
300-400 10
400-500 7
500-600 5
600-700 4
700-800 3

Find the mean deviation about the mean for the data.

Height in cms Number of boys
95 - 105 9
105 - 115 13
115 - 125 26
125 - 135 30
135 - 145 12
145 - 155 10

Find the mean deviation about median for the following data:

Marks Number of girls
0-10 6
10-20 8
20-30 14
30-40 16
40-50 4
50-60 2

Calculate the mean deviation from the mean for the  data:

 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 find the number of observations lying between

\[\bar{ X } \]  − M.D. and

\[\bar{ X } \]  + M.D, where M.D. is the mean deviation from the mean.


In 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 find the number of observations lying between

\[\bar { X } \]  − M.D. and

\[\bar { X } \]   + M.D, where M.D. is the mean deviation from the mean.


Find the mean deviation from the mean for the data:

xi 5 7 9 10 12 15
fi 8 6 2 2 2 6

Find the mean deviation from the mean for the data:

xi 10 30 50 70 90
fi 4 24 28 16 8

Find the mean deviation from the median for the  data:

xi 15 21 27 30 35
fi 3 5 6 7 8

 


Find the mean deviation from the median for the data: 

xi 74 89 42 54 91 94 35
fi 20 12 2 4 5 3 4

Compute the mean deviation from the median of the following distribution:

Class 0-10 10-20 20-30 30-40 40-50
Frequency 5 10 20 5 10

Find the mean deviation from the mean for the data:

Classes 0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800
Frequencies 4 8 9 10 7 5 4 3

 


Find the mean deviation from the mean for the data:

Classes 0-10 10-20 20-30 30-40 40-50 50-60
Frequencies 6 8 14 16 4 2

Calculate mean deviation about median age for the age distribution of 100 persons given below:

Age: 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55
Number of persons 5 6 12 14 26 12 16 9

Calculate mean deviation from the median of the following data: 

Class interval: 0–6 6–12 12–18 18–24 24–30
Frequency 4 5 3 6 2

The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.

 

A batsman scores runs in 10 innings as 38, 70, 48, 34, 42, 55, 63, 46, 54 and 44. The mean deviation about mean is


Let \[x_1 , x_2 , . . . , x_n\]  be n observations and  \[X\]  be their arithmetic mean. The standard deviation is given by

 

Find the mean deviation about the mean of the following data:

Size (x): 1 3 5 7 9 11 13 15
Frequency (f): 3 3 4 14 7 4 3 4

Find the mean deviation about the mean of the distribution:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.


Calculate the mean deviation about the mean for the following frequency distribution:

Class interval 0 – 4 4 – 8 8 – 12 12 – 16 16 – 20
Frequency 4 6 8 5 2

The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is ______.


The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is ______.


If `barx` is the mean of n values of x, then `sum_(i = 1)^n (x_i - barx)` is always equal to ______. If a has any value other than `barx`, then `sum_(i = 1)^n (x_i - barx)^2` is ______ than `sum(x_i - a)^2`


Let X = {x ∈ N: 1 ≤ x ≤ 17} and Y = {ax + b: x ∈ X and a, b ∈ R, a > 0}. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to ______.


If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×