English

The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is ______. - Mathematics

Advertisements
Advertisements

Question

The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is ______.

Options

  • 2

  • 2.57

  • 3

  • 3.75

MCQ
Fill in the Blanks

Solution

The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is 2.57.

Explanation:

Observations are given by 3, 10, 10, 4, 7, 10 and 5

∴ `barx = (3 + 10 + 10 + 4 + 7 + 10 + 5)/7`

= `49/7`

= 7

`x_i` `d_i = |x_i - barx|`
3 4
10 3
0 3
4 3
7 0
10 3
5 2
Total `sumd_i` = 18

M.D. = `(sumd_i)/n`

= `18/7`

= 2.57

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Statistics - Exercise [Page 281]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 15 Statistics
Exercise | Q 24 | Page 281

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the mean deviation about the mean for the data.

4, 7, 8, 9, 10, 12, 13, 17


Find the mean deviation about the median for the data.

xi 5 7 9 10 12 15
fi 8 6 2 2 2 6

Calculate the mean deviation from the mean for the  data:

 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


Calculate the mean deviation from the mean for the  data:

 38, 70, 48, 40, 42, 55, 63, 46, 54, 44a


Calculate the mean deviation of the following income groups of five and seven members from their medians:

I
Income in Rs.
II
Income in Rs.
4000
4200
4400
4600
4800

 
 300
4000
4200
4400
4600
4800
5800

The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
 Find mean deviation from median


In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 find the number of observations lying between

\[\bar{ X } \]  − M.D. and

\[\bar{ X } \]  + M.D, where M.D. is the mean deviation from the mean.


In 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 find the number of observations lying between

\[\bar { X } \]  − M.D. and

\[\bar { X } \]   + M.D, where M.D. is the mean deviation from the mean.


Find the mean deviation from the mean for the data:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Find the mean deviation from the median for the  data:

xi 15 21 27 30 35
fi 3 5 6 7 8

 


Find the mean deviation from the median for the data: 

xi 74 89 42 54 91 94 35
fi 20 12 2 4 5 3 4

Compute the mean deviation from the median of the following distribution:

Class 0-10 10-20 20-30 30-40 40-50
Frequency 5 10 20 5 10

Find the mean deviation from the mean for the data:

Classes 0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800
Frequencies 4 8 9 10 7 5 4 3

 


Compute mean deviation from mean of the following distribution:

Mark 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
No. of students 8 10 15 25 20 18 9 5

The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.

 

A batsman scores runs in 10 innings as 38, 70, 48, 34, 42, 55, 63, 46, 54 and 44. The mean deviation about mean is


Let \[x_1 , x_2 , . . . , x_n\]  be n observations and  \[X\]  be their arithmetic mean. The standard deviation is given by

 

Find the mean deviation about the mean of the following data:

Size (x): 1 3 5 7 9 11 13 15
Frequency (f): 3 3 4 14 7 4 3 4

Find the mean deviation about the mean of the distribution:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.


Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.


Calculate the mean deviation about the mean for the following frequency distribution:

Class interval 0 – 4 4 – 8 8 – 12 12 – 16 16 – 20
Frequency 4 6 8 5 2

While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.


When tested, the lives (in hours) of 5 bulbs were noted as follows: 1357, 1090, 1666, 1494, 1623 
The mean deviations (in hours) from their mean is ______.


The sum of squares of the deviations of the values of the variable is ______ when taken about their arithmetic mean.


Let X = {x ∈ N: 1 ≤ x ≤ 17} and Y = {ax + b: x ∈ X and a, b ∈ R, a > 0}. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to ______.


The mean and variance of seven observations are 8 and 16, respectively. If 5 of the observations are 2, 4, 10, 12, 14, then the product of the remaining two observations is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×