English

The Mean of 5 Observations is 4.4 and Their Variance is 8.24. If Three of the Observations Are 1, 2 and 6, Find the Other Two Observations. - Mathematics

Advertisements
Advertisements

Question

The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.

 

Solution

Let \[x \text{ and } y\]  be the other two observations.

Mean is 4.4. 

\[\therefore \frac{1 + 2 + 6 + x + y}{5} = 4 . 4\]

\[\Rightarrow 9 + x + y = 22\]

\[ \Rightarrow x + y = 13 . . . (1)\]


Let Var (X) be the variance of these observations, which is given to be 8.24.

If \[\bar{x}\] is the mean, then we have:

\[8 . 24 = \frac{1}{5}\left( 1^2 + 2^2 + 6^2 + x^2 + y^2 \right) - \left( x \right)^2 \]

\[ = \frac{1}{5}\left( 1 + 4 + 36 + x^2 + y^2 \right) - \left( 4 . 4 \right)^2 \]

\[ = \frac{1}{5}\left( 41 + x^2 + y^2 \right) - 19 . 36\]

\[ \Rightarrow x^2 + y^2 = 97 . . . (2)\]

\[ \left( x + y \right)^2 + \left( x - y \right)^2 = 2\left( x^2 + y^2 \right) \]

\[ \Rightarrow {13}^2 + \left( x - y \right)^2 = 2 \times 97 \left[ \text{ using eq (1) and eq } (2) \right]\]

\[ \Rightarrow \left( x - y \right)^2 = 194 - 169 = 25\]

\[ \Rightarrow x - y = \pm 5 . . . . (3)\]

\[ \text{ Solving eq } (1)\text{  and  eq (3) for x - y = - 5 and }  x + y = 13\]

\[ 2x = 18 \]

\[ \Rightarrow x = 9\]

\[ \Rightarrow y = 4\]

Thus, the other two observations are 9 and 4.

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Statistics - Exercise 32.4 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 32 Statistics
Exercise 32.4 | Q 4 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the mean deviation about the mean for the data.

4, 7, 8, 9, 10, 12, 13, 17


Find the mean deviation about the mean for the data.

38, 70, 48, 40, 42, 55, 63, 46, 54, 44


Find the mean deviation about the median for the data.

13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


Find the mean deviation about the median for the data.

xi 15 21 27 30 35
fi 3 5 6 7 8

Find the mean deviation about the mean for the data.

Income per day in ₹ Number of persons
0-100 4
100-200 8
200-300 9
300-400 10
400-500 7
500-600 5
600-700 4
700-800 3

Find the mean deviation about median for the following data:

Marks Number of girls
0-10 6
10-20 8
20-30 14
30-40 16
40-50 4
50-60 2

Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age Number
16 - 20 5
21 - 25 6
26 - 30 12
31 - 35 14
36 - 40 26
41 - 45 12
46 - 50 16
51 - 55 9

Calculate the mean deviation about the median of the observation:

 38, 70, 48, 34, 42, 55, 63, 46, 54, 44


Calculate the mean deviation from the mean for the data: 

 4, 7, 8, 9, 10, 12, 13, 17


Calculate the mean deviation from the mean for the  data:

 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


Calculate the mean deviation from the mean for the  data:

(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49

 

The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2 

Find mean deviation from the mean also.

 

 


In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 find the number of observations lying between

\[\bar{ X } \]  − M.D. and

\[\bar{ X } \]  + M.D, where M.D. is the mean deviation from the mean.


Find the mean deviation from the mean for the data:

xi 5 10 15 20 25
fi 7 4 6 3 5

Find the mean deviation from the mean for the data:

Classes 0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800
Frequencies 4 8 9 10 7 5 4 3

 


Find the mean deviation from the mean for the data:

Classes 0-10 10-20 20-30 30-40 40-50 50-60
Frequencies 6 8 14 16 4 2

Compute mean deviation from mean of the following distribution:

Mark 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
No. of students 8 10 15 25 20 18 9 5

Find the mean deviation from the mean and from median of the following distribution:

Marks 0-10 10-20 20-30 30-40 40-50
No. of students 5 8 15 16 6

Calculate the mean deviation about the mean for the following frequency distribution:
 

Class interval: 0–4 4–8 8–12 12–16 16–20
Frequency 4 6 8 5 2

Calculate mean deviation from the median of the following data: 

Class interval: 0–6 6–12 12–18 18–24 24–30
Frequency 4 5 3 6 2

The mean deviation of the series aa + da + 2d, ..., a + 2n from its mean is


The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is


The mean deviation for n observations \[x_1 , x_2 , . . . , x_n\]  from their mean \[\bar{X} \]  is given by

 
  

Find the mean deviation about the mean of the distribution:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.


Find the mean and variance of the frequency distribution given below:

`x` 1 ≤ x < 3 3 ≤ x < 5 5 ≤ x < 7 7 ≤ x < 10
`f` 6 4 5 1

Calculate the mean deviation from the median of the following data:

Class interval 0 – 6 6 – 12 12 – 18 18 – 24 24 – 30
Frequency 4 5 3 6 2

The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is ______.


Mean deviation for n observations x1, x2, ..., xn from their mean `barx` is given by ______.


The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is ______.


The sum of squares of the deviations of the values of the variable is ______ when taken about their arithmetic mean.


The mean and variance of seven observations are 8 and 16, respectively. If 5 of the observations are 2, 4, 10, 12, 14, then the product of the remaining two observations is ______.


If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×