Advertisements
Advertisements
Question
The mean deviation of the series a, a + d, a + 2d, ..., a + 2n from its mean is
Options
\[\frac{(n + 1) d}{2n + 1}\]
\[\frac{nd}{2n + 1}\]
\[\frac{n (n + 1) d}{2n + 1}\]
\[\frac{(2n + 1) d}{n (n + 1)}\]
Solution
\[\frac{n (n + 1) d}{2n + 1}\]
\[x_i\]
|
\[\left| x_i - X \right| = \left| x_i - \left( a + nd \right) \right|\]
|
---|---|
a | nd |
a + d | (n-1)d |
a + 2d | (n-2)d |
a + 3d | (n-3)d |
: | : |
: | : |
a + (n - 1)d | d |
a + nd | 0 |
a + (n+1)d | d |
: | : |
: | : |
a + 2nd | nd |
\[\sum_{} x_i = \left( 2n + 1 \right)\left( a + nd \right)\]
|
\[\sum_{} \left| x_i - X \right| = n\left( n + 1 \right)d\]
|
\[\text{ There are 2n + 1 terms } . \]
\[ \Rightarrow N = 2n + 1\]
\[ \sum_{} x_i = a + a + d + a + 2d + a + 3d + . . . + a + 2nd\]
\[ = (2n + 1)a + d (1 + 2 + 3 + . . . + 2n) \left[ a + a + a + . . . (2n + 1) \text{ times } = \left( 2n + 1 \right) a \right]\]
\[ = (2n + 1)a + \frac{2n\left( 2n + 1 \right)d}{2} \left[ \text{ Sum of the first n natural numbers is } \frac{n (n + 1)}{2}, \text{ but here we are considering the first 2n numbers } . \right]\]
\[ = \left( 2n + 1 \right)a + \left( 2n + 1 \right)nd \]
\[ = \left( 2n + 1 \right)\left( a + nd \right)\]
\[X = \frac{\left( 2n + 1 \right)\left( a + nd \right)}{\left( 2n + 1 \right)}\]
\[ = a + nd\]
\[ \sum_{} \left| x_i - X \right| = nd + (n - 1)d + (n - 2)d + . . . + d + 0 + d + 2 d + 3d + . . . + nd\]
\[ = d\left( n + \left( n - 1 \right) + \left( n - 2 \right) + . . . + 1 \right) + 0 + d\left( 1 + 2 + 3 + . . . + n \right)\]
\[ = \frac{dn\left( n + 1 \right)}{2} + \frac{dn\left( n + 1 \right)}{2} \left\{ \because 1 + 2 + 3 + . . . + n = \frac{n\left( n + 1 \right)}{2} \right\}\]
\[ = n(n + 1)d\]
\[\text{ Mean deviation about the mean } = \frac{\sum_{} \left| x_i - X \right|}{N}\]
\[ = \frac{n(n + 1)d}{\left( 2n + 1 \right)}\]
APPEARS IN
RELATED QUESTIONS
Find the mean deviation about the mean for the data.
4, 7, 8, 9, 10, 12, 13, 17
Find the mean deviation about the median for the data.
36, 72, 46, 42, 60, 45, 53, 46, 51, 49
Find the mean deviation about the mean for the data.
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
Find the mean deviation about the mean for the data.
xi | 10 | 30 | 50 | 70 | 90 |
fi | 4 | 24 | 28 | 16 | 8 |
Find the mean deviation about the median for the data.
xi | 15 | 21 | 27 | 30 | 35 |
fi | 3 | 5 | 6 | 7 | 8 |
Find the mean deviation about the mean for the data.
Income per day in ₹ | Number of persons |
0-100 | 4 |
100-200 | 8 |
200-300 | 9 |
300-400 | 10 |
400-500 | 7 |
500-600 | 5 |
600-700 | 4 |
700-800 | 3 |
Find the mean deviation about median for the following data:
Marks | Number of girls |
0-10 | 6 |
10-20 | 8 |
20-30 | 14 |
30-40 | 16 |
40-50 | 4 |
50-60 | 2 |
Calculate the mean deviation about median age for the age distribution of 100 persons given below:
Age | Number |
16 - 20 | 5 |
21 - 25 | 6 |
26 - 30 | 12 |
31 - 35 | 14 |
36 - 40 | 26 |
41 - 45 | 12 |
46 - 50 | 16 |
51 - 55 | 9 |
Calculate the mean deviation about the median of the observation:
3011, 2780, 3020, 2354, 3541, 4150, 5000
Calculate the mean deviation about the median of the observation:
38, 70, 48, 34, 42, 55, 63, 46, 54, 44
Calculate the mean deviation about the median of the observation:
34, 66, 30, 38, 44, 50, 40, 60, 42, 51
Calculate the mean deviation about the median of the observation:
38, 70, 48, 34, 63, 42, 55, 44, 53, 47
Calculate the mean deviation from the mean for the data:
4, 7, 8, 9, 10, 12, 13, 17
Calculate the mean deviation from the mean for the data:
13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17
Calculate the mean deviation of the following income groups of five and seven members from their medians:
I Income in Rs. |
II Income in Rs. |
4000 4200 4400 4600 4800 |
300 4000 4200 4400 4600 4800 5800 |
In 22, 24, 30, 27, 29, 31, 25, 28, 41, 42 find the number of observations lying between
\[\bar { X } \] − M.D. and
\[\bar { X } \] + M.D, where M.D. is the mean deviation from the mean.
Find the mean deviation from the mean for the data:
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
Find the mean deviation from the mean for the data:
Size | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
Frequency | 3 | 3 | 4 | 14 | 7 | 4 | 3 | 4 |
Compute mean deviation from mean of the following distribution:
Mark | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 |
No. of students | 8 | 10 | 15 | 25 | 20 | 18 | 9 | 5 |
Find the mean deviation from the mean and from median of the following distribution:
Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
No. of students | 5 | 8 | 15 | 16 | 6 |
Calculate mean deviation about median age for the age distribution of 100 persons given below:
Age: | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 |
Number of persons | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
Calculate the mean deviation about the mean for the following frequency distribution:
Class interval: | 0–4 | 4–8 | 8–12 | 12–16 | 16–20 |
Frequency | 4 | 6 | 8 | 5 | 2 |
For a frequency distribution mean deviation from mean is computed by
A batsman scores runs in 10 innings as 38, 70, 48, 34, 42, 55, 63, 46, 54 and 44. The mean deviation about mean is
The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is
Let \[x_1 , x_2 , . . . , x_n\] be n observations and \[X\] be their arithmetic mean. The standard deviation is given by
The mean deviation of the data 2, 9, 9, 3, 6, 9, 4 from the mean is ______.
Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.
Determine mean and standard deviation of first n terms of an A.P. whose first term is a and common difference is d.
Mean deviation for n observations x1, x2, ..., xn from their mean `barx` is given by ______.
When tested, the lives (in hours) of 5 bulbs were noted as follows: 1357, 1090, 1666, 1494, 1623
The mean deviations (in hours) from their mean is ______.
The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is ______.
If `barx` is the mean of n values of x, then `sum_(i = 1)^n (x_i - barx)` is always equal to ______. If a has any value other than `barx`, then `sum_(i = 1)^n (x_i - barx)^2` is ______ than `sum(x_i - a)^2`
The sum of squares of the deviations of the values of the variable is ______ when taken about their arithmetic mean.