English

Determine mean and standard deviation of first n terms of an A.P. whose first term is a and common difference is d. - Mathematics

Advertisements
Advertisements

Question

Determine mean and standard deviation of first n terms of an A.P. whose first term is a and common difference is d.

Sum

Solution

`x_i` `x_i - a` `(x_i - a)^2`
`a` 0 0
`a + d` `d` `d^2`
`a + 2d` `2d` `4d^2`
`a + (n - 1)d` `(n - 1)d` `(n - 1)^2d^2`

We know that `sumx_i = n/2 [2a + (n - 1)d]`

∴ Mean = `(sumx_i)/n`

= `1/n[n/2 {2a + (n - 1)d}]`

= `1/2[2a + (n - 1)d]`

= `a + (n - 1)/2 d`

∴ `sum(x_i - a) = d[1 + 2 + 3 + ... + (n - 1)]`

= `(d(n - 1)n)/2`

And `sum(x_i - a)^2 = d^2[1^2 + 2^2 + 3^2 + ... + (n - 1)^2]`

= `d^2 * (n(n - 1)(2n - 1))/6`

∴ `sigma = sqrt((sum(x_i - a)^2)/n - ((sum(x_i - a))/n)^2`

= `sqrt((d^2n(n - 1)(2n - 1))/(6n) - ((dn(n - 1))/(2n))^2`

= `sqrt((d^2(n - 1)(2n - 1))/6 - (d^2(n - 1)^2)/4`

= `dsqrt((n - 1)/2((2n - 1)/3 - (n - 1)/3))`

= `dsqrt((n - 1)/2 [(4n - 2 - 3n + 3)/6]`

= `dsqrt(((n - 1)/2)((n + 1)/6)`

= `dsqrt((n^2 - 1)/12)`

Hence, the required S.D. = `dsqrt((n^2 - 1)/12)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Statistics - Exercise [Page 280]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 15 Statistics
Exercise | Q 20 | Page 280

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the mean deviation about the median for the data.

13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


Find the mean deviation about the median for the data.

xi 15 21 27 30 35
fi 3 5 6 7 8

Find the mean deviation about the mean for the data.

Height in cms Number of boys
95 - 105 9
105 - 115 13
115 - 125 26
125 - 135 30
135 - 145 12
145 - 155 10

Calculate the mean deviation about the median of the observation:

3011, 2780, 3020, 2354, 3541, 4150, 5000


Calculate the mean deviation about the median of the observation:

 22, 24, 30, 27, 29, 31, 25, 28, 41, 42


Calculate the mean deviation about the median of the observation:

 38, 70, 48, 34, 63, 42, 55, 44, 53, 47

 

Calculate the mean deviation from the mean for the  data:

(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49

 

The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
 Find mean deviation from median


The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2 

Find mean deviation from the mean also.

 

 


In 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 find the number of observations lying between

\[\bar { X } \]  − M.D. and

\[\bar { X } \]   + M.D, where M.D. is the mean deviation from the mean.


Find the mean deviation from the mean for the data:

xi 5 7 9 10 12 15
fi 8 6 2 2 2 6

Find the mean deviation from the mean for the data:

xi 5 10 15 20 25
fi 7 4 6 3 5

Find the mean deviation from the median for the data: 

xi 74 89 42 54 91 94 35
fi 20 12 2 4 5 3 4

Find the mean deviation from the mean for the data:

Classes 0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800
Frequencies 4 8 9 10 7 5 4 3

 


Compute mean deviation from mean of the following distribution:

Mark 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
No. of students 8 10 15 25 20 18 9 5

Calculate mean deviation about median age for the age distribution of 100 persons given below:

Age: 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55
Number of persons 5 6 12 14 26 12 16 9

The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.

 

The mean deviation from the median is


The mean deviation of the numbers 3, 4, 5, 6, 7 from the mean is


Find the mean deviation about the median of the following distribution:

Marks obtained 10 11 12 14 15
No. of students 2 3 8 3 4

Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.


Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.


Mean deviation for n observations x1, x2, ..., xn from their mean `barx` is given by ______.


Find the mean deviation about the mean for the data.

xi 5 10 15 20 25
fi 7 4 6 3 5

If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×