Advertisements
Advertisements
Question
Determine mean and standard deviation of first n terms of an A.P. whose first term is a and common difference is d.
Solution
`x_i` | `x_i - a` | `(x_i - a)^2` |
`a` | 0 | 0 |
`a + d` | `d` | `d^2` |
`a + 2d` | `2d` | `4d^2` |
— | — | — |
— | — | — |
— | — | — |
`a + (n - 1)d` | `(n - 1)d` | `(n - 1)^2d^2` |
We know that `sumx_i = n/2 [2a + (n - 1)d]`
∴ Mean = `(sumx_i)/n`
= `1/n[n/2 {2a + (n - 1)d}]`
= `1/2[2a + (n - 1)d]`
= `a + (n - 1)/2 d`
∴ `sum(x_i - a) = d[1 + 2 + 3 + ... + (n - 1)]`
= `(d(n - 1)n)/2`
And `sum(x_i - a)^2 = d^2[1^2 + 2^2 + 3^2 + ... + (n - 1)^2]`
= `d^2 * (n(n - 1)(2n - 1))/6`
∴ `sigma = sqrt((sum(x_i - a)^2)/n - ((sum(x_i - a))/n)^2`
= `sqrt((d^2n(n - 1)(2n - 1))/(6n) - ((dn(n - 1))/(2n))^2`
= `sqrt((d^2(n - 1)(2n - 1))/6 - (d^2(n - 1)^2)/4`
= `dsqrt((n - 1)/2((2n - 1)/3 - (n - 1)/3))`
= `dsqrt((n - 1)/2 [(4n - 2 - 3n + 3)/6]`
= `dsqrt(((n - 1)/2)((n + 1)/6)`
= `dsqrt((n^2 - 1)/12)`
Hence, the required S.D. = `dsqrt((n^2 - 1)/12)`.
APPEARS IN
RELATED QUESTIONS
Find the mean deviation about the median for the data.
13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17
Find the mean deviation about the median for the data.
xi | 15 | 21 | 27 | 30 | 35 |
fi | 3 | 5 | 6 | 7 | 8 |
Find the mean deviation about the mean for the data.
Height in cms | Number of boys |
95 - 105 | 9 |
105 - 115 | 13 |
115 - 125 | 26 |
125 - 135 | 30 |
135 - 145 | 12 |
145 - 155 | 10 |
Calculate the mean deviation about the median of the observation:
3011, 2780, 3020, 2354, 3541, 4150, 5000
Calculate the mean deviation about the median of the observation:
22, 24, 30, 27, 29, 31, 25, 28, 41, 42
Calculate the mean deviation about the median of the observation:
38, 70, 48, 34, 63, 42, 55, 44, 53, 47
Calculate the mean deviation from the mean for the data:
(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49
The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
Find mean deviation from median
The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
Find mean deviation from the mean also.
In 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 find the number of observations lying between
\[\bar { X } \] − M.D. and
\[\bar { X } \] + M.D, where M.D. is the mean deviation from the mean.
Find the mean deviation from the mean for the data:
xi | 5 | 7 | 9 | 10 | 12 | 15 |
fi | 8 | 6 | 2 | 2 | 2 | 6 |
Find the mean deviation from the mean for the data:
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
Find the mean deviation from the median for the data:
xi | 74 | 89 | 42 | 54 | 91 | 94 | 35 |
fi | 20 | 12 | 2 | 4 | 5 | 3 | 4 |
Find the mean deviation from the mean for the data:
Classes | 0-100 | 100-200 | 200-300 | 300-400 | 400-500 | 500-600 | 600-700 | 700-800 |
Frequencies | 4 | 8 | 9 | 10 | 7 | 5 | 4 | 3 |
Compute mean deviation from mean of the following distribution:
Mark | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 |
No. of students | 8 | 10 | 15 | 25 | 20 | 18 | 9 | 5 |
Calculate mean deviation about median age for the age distribution of 100 persons given below:
Age: | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 |
Number of persons | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.
The mean deviation from the median is
The mean deviation of the numbers 3, 4, 5, 6, 7 from the mean is
Find the mean deviation about the median of the following distribution:
Marks obtained | 10 | 11 | 12 | 14 | 15 |
No. of students | 2 | 3 | 8 | 3 | 4 |
Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.
Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.
Mean deviation for n observations x1, x2, ..., xn from their mean `barx` is given by ______.
Find the mean deviation about the mean for the data.
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.