English

The Lengths (In Cm) of 10 Rods in a Shop Are Given Below: 40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2 Find Mean Deviation from Median - Mathematics

Advertisements
Advertisements

Question

The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
 Find mean deviation from median

Answer in Brief

Solution

 Formula for the mean deviation from the median is as follows:

\[MD = \frac{1}{n} \sum^n_{i = 1} \left| d_i \right|, \text{ where } \left| d_i \right| = \left| x_i - M \right|\]
Arranging the data in ascending order for finding the median:
15.2, 27.9, 30.2, 32.5, 40, 52.3, 52.8, 55.2, 72.9, 79
Here, 
n = 10. 
Therefore, median is the average of the fifth and the sixth observations.
\[M = \frac{40 + 52 . 3}{2} = 46 . 15\]
\[x_i\]
\[\left| d_i \right| = \left| x_i - 46 . 15 \right|\]
40 6.15
52.3 6.15
55.2 9.05
72.9 26.75
52.8 6.65
79 32.85
32.5 13.65
15.2 30.95
27.9 18.25
30.2 15.95
Total 166.4

\[MD = \frac{1}{10} \times 166.4 = 16.64\]

Mean deviation from median in 16.64cm.

shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Statistics - Exercise 32.1 [Page 6]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 32 Statistics
Exercise 32.1 | Q 4.1 | Page 6

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the mean deviation about the mean for the data.

38, 70, 48, 40, 42, 55, 63, 46, 54, 44


Find the mean deviation about the mean for the data.

xi 5 10 15 20 25
fi 7 4 6 3 5

Find the mean deviation about the mean for the data.

xi 10 30 50 70 90
fi 4 24 28 16 8

Find the mean deviation about the median for the data.

xi 5 7 9 10 12 15
fi 8 6 2 2 2 6

Find the mean deviation about median for the following data:

Marks Number of girls
0-10 6
10-20 8
20-30 14
30-40 16
40-50 4
50-60 2

Calculate the mean deviation about the median of the observation:

 38, 70, 48, 34, 42, 55, 63, 46, 54, 44


Calculate the mean deviation about the median of the observation:

 34, 66, 30, 38, 44, 50, 40, 60, 42, 51


Calculate the mean deviation about the median of the observation:

 38, 70, 48, 34, 63, 42, 55, 44, 53, 47

 

Calculate the mean deviation of the following income groups of five and seven members from their medians:

I
Income in Rs.
II
Income in Rs.
4000
4200
4400
4600
4800

 
 300
4000
4200
4400
4600
4800
5800

The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2 

Find mean deviation from the mean also.

 

 


In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 find the number of observations lying between

\[\bar{ X } \]  − M.D. and

\[\bar{ X } \]  + M.D, where M.D. is the mean deviation from the mean.


In  22, 24, 30, 27, 29, 31, 25, 28, 41, 42 find the number of observations lying between 

\[\bar { X } \]  − M.D. and

\[\bar { X } \]   + M.D, where M.D. is the mean deviation from the mean.


In 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 find the number of observations lying between

\[\bar { X } \]  − M.D. and

\[\bar { X } \]   + M.D, where M.D. is the mean deviation from the mean.


Find the mean deviation from the mean for the data:

xi 5 7 9 10 12 15
fi 8 6 2 2 2 6

Find the mean deviation from the mean for the data:

xi 5 10 15 20 25
fi 7 4 6 3 5

Compute the mean deviation from the median of the following distribution:

Class 0-10 10-20 20-30 30-40 40-50
Frequency 5 10 20 5 10

Calculate the mean deviation about the mean for the following frequency distribution:
 

Class interval: 0–4 4–8 8–12 12–16 16–20
Frequency 4 6 8 5 2

The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.

 

The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is


Let \[x_1 , x_2 , . . . , x_n\]  be n observations and  \[X\]  be their arithmetic mean. The standard deviation is given by

 

The mean deviation of the data 2, 9, 9, 3, 6, 9, 4 from the mean is ______.


Find the mean deviation about the median of the following distribution:

Marks obtained 10 11 12 14 15
No. of students 2 3 8 3 4

Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.


Find the mean and variance of the frequency distribution given below:

`x` 1 ≤ x < 3 3 ≤ x < 5 5 ≤ x < 7 7 ≤ x < 10
`f` 6 4 5 1

Calculate the mean deviation from the median of the following data:

Class interval 0 – 6 6 – 12 12 – 18 18 – 24 24 – 30
Frequency 4 5 3 6 2

Determine mean and standard deviation of first n terms of an A.P. whose first term is a and common difference is d.


While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.


Mean deviation for n observations x1, x2, ..., xn from their mean `barx` is given by ______.


When tested, the lives (in hours) of 5 bulbs were noted as follows: 1357, 1090, 1666, 1494, 1623 
The mean deviations (in hours) from their mean is ______.


If `barx` is the mean of n values of x, then `sum_(i = 1)^n (x_i - barx)` is always equal to ______. If a has any value other than `barx`, then `sum_(i = 1)^n (x_i - barx)^2` is ______ than `sum(x_i - a)^2`


Let X = {x ∈ N: 1 ≤ x ≤ 17} and Y = {ax + b: x ∈ X and a, b ∈ R, a > 0}. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to ______.


The mean and variance of seven observations are 8 and 16, respectively. If 5 of the observations are 2, 4, 10, 12, 14, then the product of the remaining two observations is ______.


Find the mean deviation about the mean for the data.

xi 5 10 15 20 25
fi 7 4 6 3 5

If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×