English

Compute the Mean Deviation from the Median of the Following Distribution:Class0-1010-2020-3030-4040-50frequency51020510 - Mathematics

Advertisements
Advertisements

Question

Compute the mean deviation from the median of the following distribution:

Class 0-10 10-20 20-30 30-40 40-50
Frequency 5 10 20 5 10

Solution

Class   Frequency
 

\[f_i\]

Cumulative frequency
\[x_i\]

 

\[\left| d_i \right| = \left| x_i - 25 \right|\]

 

\[f_i \left| d_i \right|\]

0−10 5 5 5 20 100
10−20 10 15 15 10 100
20−30 20 35 25 0 0
30−40 5 40 35 10 50
40−50 10 50 45 20 200
  \[N = \sum ^5_{i = 1} f_i= 50\]           \[N = \sum f_i5_{i = 1} = 50\

\[\sum f_i \left| d_i \right|^5_{i = 1} = 450\]

 

\[Here, N = 50 \]
\[ \Rightarrow \frac{N}{2} = 25\]

The cumulative frequency greater than \[\frac{N}{2} = 25\] is 35 and the corresponding class is 20−30.
Therefore, the median class is  20−30.

\[ \therefore l = 20, f = 20, F = 15, N = 50, h = 10\]
\[ \therefore \text{ Median } = l + \frac{\left( \frac{N}{2} - F \right)}{f} \times h \]
\[ = 20 + \frac{\left( \frac{50}{2} - 15 \right)}{20} \times 10 \]
\[ = 20 + \frac{\left( 25 - 15 \right)}{20} \times 10 \]
\[ = 25\]
\[\text{ Mean deviation from the median } = \frac{\sum^5_{i = 1} f_i \left| d_i \right|}{N} = \frac{450}{50} = 9\]
 
shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Statistics - Exercise 32.3 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 32 Statistics
Exercise 32.3 | Q 1 | Page 16

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the mean deviation about the median for the data.

36, 72, 46, 42, 60, 45, 53, 46, 51, 49


Find the mean deviation about the mean for the data.

xi 5 10 15 20 25
fi 7 4 6 3 5

Find the mean deviation about median for the following data:

Marks Number of girls
0-10 6
10-20 8
20-30 14
30-40 16
40-50 4
50-60 2

Calculate the mean deviation about the median of the observation:

 38, 70, 48, 34, 42, 55, 63, 46, 54, 44


Calculate the mean deviation about the median of the observation:

 34, 66, 30, 38, 44, 50, 40, 60, 42, 51


Calculate the mean deviation from the mean for the data: 

 4, 7, 8, 9, 10, 12, 13, 17


Calculate the mean deviation of the following income groups of five and seven members from their medians:

I
Income in Rs.
II
Income in Rs.
4000
4200
4400
4600
4800

 
 300
4000
4200
4400
4600
4800
5800

In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 find the number of observations lying between

\[\bar{ X } \]  − M.D. and

\[\bar{ X } \]  + M.D, where M.D. is the mean deviation from the mean.


In  22, 24, 30, 27, 29, 31, 25, 28, 41, 42 find the number of observations lying between 

\[\bar { X } \]  − M.D. and

\[\bar { X } \]   + M.D, where M.D. is the mean deviation from the mean.


Find the mean deviation from the mean for the data:

xi 5 7 9 10 12 15
fi 8 6 2 2 2 6

Find the mean deviation from the mean for the data:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Find the mean deviation from the median for the  data:

xi 15 21 27 30 35
fi 3 5 6 7 8

 


Find the mean deviation from the mean for the data:

Classes 95-105 105-115 115-125 125-135 135-145 145-155
Frequencies 9 13 16 26 30 12

 


Compute mean deviation from mean of the following distribution:

Mark 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
No. of students 8 10 15 25 20 18 9 5

Find the mean deviation from the mean and from median of the following distribution:

Marks 0-10 10-20 20-30 30-40 40-50
No. of students 5 8 15 16 6

The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.

 

For a frequency distribution mean deviation from mean is computed by


The mean deviation from the median is


A batsman scores runs in 10 innings as 38, 70, 48, 34, 42, 55, 63, 46, 54 and 44. The mean deviation about mean is


The mean deviation of the numbers 3, 4, 5, 6, 7 from the mean is


The mean deviation for n observations \[x_1 , x_2 , . . . , x_n\]  from their mean \[\bar{X} \]  is given by

 
  

Find the mean deviation about the mean of the distribution:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Find the mean deviation about the median of the following distribution:

Marks obtained 10 11 12 14 15
No. of students 2 3 8 3 4

Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.


Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.


Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.


Find the mean and variance of the frequency distribution given below:

`x` 1 ≤ x < 3 3 ≤ x < 5 5 ≤ x < 7 7 ≤ x < 10
`f` 6 4 5 1

Calculate the mean deviation from the median of the following data:

Class interval 0 – 6 6 – 12 12 – 18 18 – 24 24 – 30
Frequency 4 5 3 6 2

When tested, the lives (in hours) of 5 bulbs were noted as follows: 1357, 1090, 1666, 1494, 1623 
The mean deviations (in hours) from their mean is ______.


Let X = {x ∈ N: 1 ≤ x ≤ 17} and Y = {ax + b: x ∈ X and a, b ∈ R, a > 0}. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to ______.


If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×