English

Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items. - Mathematics

Advertisements
Advertisements

Question

Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.

Sum

Solution

Given that `barx = 50, n = 100` and S.D. `(sigma) = 4`

`barx = (sumx_i)/N`

⇒ 50 = `(sumx_i)/100`

⇒ `sumx_i` = 5000

And variance `sigma^2 = (sumf_ix_i^2)/N - ((sumf_ix_i)/N)^2`

`(4)^2 = (sumf_ix_i^2)/100 - (50)^2`

⇒ 16 = `(sumf_ix_i^2)/100 - 2500`

∴ `sumf_ix_i^2 = (2500 + 16) xx 100`

⇒ `sumf_ix_i^2 = 2516 xx 100` = 251600

Hence, the required sum are 5000 and 251600.

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Statistics - Exercise [Page 279]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 15 Statistics
Exercise | Q 13 | Page 279

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the mean deviation about the mean for the data.

38, 70, 48, 40, 42, 55, 63, 46, 54, 44


Find the mean deviation about the mean for the data.

xi 10 30 50 70 90
fi 4 24 28 16 8

Find the mean deviation about the median for the data.

xi 5 7 9 10 12 15
fi 8 6 2 2 2 6

Find the mean deviation about the mean for the data.

Income per day in ₹ Number of persons
0-100 4
100-200 8
200-300 9
300-400 10
400-500 7
500-600 5
600-700 4
700-800 3

Find the mean deviation about the mean for the data.

Height in cms Number of boys
95 - 105 9
105 - 115 13
115 - 125 26
125 - 135 30
135 - 145 12
145 - 155 10

Find the mean deviation about median for the following data:

Marks Number of girls
0-10 6
10-20 8
20-30 14
30-40 16
40-50 4
50-60 2

Calculate the mean deviation about the median of the observation:

 34, 66, 30, 38, 44, 50, 40, 60, 42, 51


Calculate the mean deviation about the median of the observation:

 22, 24, 30, 27, 29, 31, 25, 28, 41, 42


Calculate the mean deviation from the mean for the  data:

 38, 70, 48, 40, 42, 55, 63, 46, 54, 44a


Calculate the mean deviation of the following income groups of five and seven members from their medians:

I
Income in Rs.
II
Income in Rs.
4000
4200
4400
4600
4800

 
 300
4000
4200
4400
4600
4800
5800

In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 find the number of observations lying between

\[\bar{ X } \]  − M.D. and

\[\bar{ X } \]  + M.D, where M.D. is the mean deviation from the mean.


Find the mean deviation from the mean for the data:

xi 5 10 15 20 25
fi 7 4 6 3 5

Find the mean deviation from the mean for the data:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Find the mean deviation from the mean for the data:

Classes 0-10 10-20 20-30 30-40 40-50 50-60
Frequencies 6 8 14 16 4 2

Calculate the mean deviation about the mean for the following frequency distribution:
 

Class interval: 0–4 4–8 8–12 12–16 16–20
Frequency 4 6 8 5 2

The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.

 

The mean deviation for n observations \[x_1 , x_2 , . . . , x_n\]  from their mean \[\bar{X} \]  is given by

 
  

Let \[x_1 , x_2 , . . . , x_n\]  be n observations and  \[X\]  be their arithmetic mean. The standard deviation is given by

 

Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.


Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.


Find the mean and variance of the frequency distribution given below:

`x` 1 ≤ x < 3 3 ≤ x < 5 5 ≤ x < 7 7 ≤ x < 10
`f` 6 4 5 1

Calculate the mean deviation from the median of the following data:

Class interval 0 – 6 6 – 12 12 – 18 18 – 24 24 – 30
Frequency 4 5 3 6 2

While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.


When tested, the lives (in hours) of 5 bulbs were noted as follows: 1357, 1090, 1666, 1494, 1623 
The mean deviations (in hours) from their mean is ______.


The sum of squares of the deviations of the values of the variable is ______ when taken about their arithmetic mean.


Let X = {x ∈ N: 1 ≤ x ≤ 17} and Y = {ax + b: x ∈ X and a, b ∈ R, a > 0}. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to ______.


The mean and variance of seven observations are 8 and 16, respectively. If 5 of the observations are 2, 4, 10, 12, 14, then the product of the remaining two observations is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×