Advertisements
Advertisements
Question
Find the mean deviation about the median for the data.
xi | 5 | 7 | 9 | 10 | 12 | 15 |
fi | 8 | 6 | 2 | 2 | 2 | 6 |
Solution
xi | fi | c.f | |xi − M| | fi |xi − M| |
5 | 8 | 8 | 2 | 16 |
7 | 6 | 14 | 0 | 0 |
9 | 2 | 16 | 2 | 4 |
10 | 2 | 18 | 3 | 6 |
12 | 2 | 20 | 5 | 10 |
15 | 6 | 26 | 8 | 48 |
Sum | 26 | - | - | 84 |
Sum of frequencies = 26
`26/2` = 13th term = 7 and 14th term = 7
∴ Median = `(7 + 7)/2 = 7`
∴ Deviation about mean (M) = `(sum"f"_"i" |"x"_"i" - "M"|)/"N"`
= `84/26`
= 3.23
APPEARS IN
RELATED QUESTIONS
Find the mean deviation about the mean for the data.
4, 7, 8, 9, 10, 12, 13, 17
Find the mean deviation about the mean for the data.
xi | 10 | 30 | 50 | 70 | 90 |
fi | 4 | 24 | 28 | 16 | 8 |
Find the mean deviation about the mean for the data.
Income per day in ₹ | Number of persons |
0-100 | 4 |
100-200 | 8 |
200-300 | 9 |
300-400 | 10 |
400-500 | 7 |
500-600 | 5 |
600-700 | 4 |
700-800 | 3 |
Find the mean deviation about median for the following data:
Marks | Number of girls |
0-10 | 6 |
10-20 | 8 |
20-30 | 14 |
30-40 | 16 |
40-50 | 4 |
50-60 | 2 |
Calculate the mean deviation about the median of the observation:
3011, 2780, 3020, 2354, 3541, 4150, 5000
Calculate the mean deviation about the median of the observation:
38, 70, 48, 34, 42, 55, 63, 46, 54, 44
Calculate the mean deviation about the median of the observation:
34, 66, 30, 38, 44, 50, 40, 60, 42, 51
Calculate the mean deviation from the mean for the data:
(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49
Calculate the mean deviation from the mean for the data:
38, 70, 48, 40, 42, 55, 63, 46, 54, 44a
Find the mean deviation from the mean for the data:
xi | 5 | 7 | 9 | 10 | 12 | 15 |
fi | 8 | 6 | 2 | 2 | 2 | 6 |
Find the mean deviation from the mean for the data:
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
Find the mean deviation from the mean for the data:
xi | 10 | 30 | 50 | 70 | 90 |
fi | 4 | 24 | 28 | 16 | 8 |
Find the mean deviation from the mean for the data:
Size | 20 | 21 | 22 | 23 | 24 |
Frequency | 6 | 4 | 5 | 1 | 4 |
Find the mean deviation from the median for the data:
xi | 74 | 89 | 42 | 54 | 91 | 94 | 35 |
fi | 20 | 12 | 2 | 4 | 5 | 3 | 4 |
Find the mean deviation from the mean for the data:
Classes | 95-105 | 105-115 | 115-125 | 125-135 | 135-145 | 145-155 |
Frequencies | 9 | 13 | 16 | 26 | 30 | 12 |
Calculate the mean deviation about the mean for the following frequency distribution:
Class interval: | 0–4 | 4–8 | 8–12 | 12–16 | 16–20 |
Frequency | 4 | 6 | 8 | 5 | 2 |
Calculate mean deviation from the median of the following data:
Class interval: | 0–6 | 6–12 | 12–18 | 18–24 | 24–30 |
Frequency | 4 | 5 | 3 | 6 | 2 |
The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.
The mean deviation from the median is
A batsman scores runs in 10 innings as 38, 70, 48, 34, 42, 55, 63, 46, 54 and 44. The mean deviation about mean is
The mean deviation of the numbers 3, 4, 5, 6, 7 from the mean is
The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is
Let \[x_1 , x_2 , . . . , x_n\] be n observations and \[X\] be their arithmetic mean. The standard deviation is given by
Find the mean deviation about the median of the following distribution:
Marks obtained | 10 | 11 | 12 | 14 | 15 |
No. of students | 2 | 3 | 8 | 3 | 4 |
Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.
Find the mean and variance of the frequency distribution given below:
`x` | 1 ≤ x < 3 | 3 ≤ x < 5 | 5 ≤ x < 7 | 7 ≤ x < 10 |
`f` | 6 | 4 | 5 | 1 |
When tested, the lives (in hours) of 5 bulbs were noted as follows: 1357, 1090, 1666, 1494, 1623
The mean deviations (in hours) from their mean is ______.
The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is ______.
The sum of squares of the deviations of the values of the variable is ______ when taken about their arithmetic mean.
Let X = {x ∈ N: 1 ≤ x ≤ 17} and Y = {ax + b: x ∈ X and a, b ∈ R, a > 0}. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to ______.
Find the mean deviation about the mean for the data.
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.