English

Find the Mean Deviation from the Mean for the Data:Classes95-105105-115115-125125-135135-145145-155frequencies91316263012 - Mathematics

Advertisements
Advertisements

Question

Find the mean deviation from the mean for the data:

Classes 95-105 105-115 115-125 125-135 135-145 145-155
Frequencies 9 13 16 26 30 12

 

Solution

We will compute the mean deviation from the mean in the following way: 

Classes  Frequency 
\[f_i\]
Midpoints
\[x_i\]
 

\[f_i x_i\]
 

\[\left| x_i - X \right|\]
=
\[\left| x_i - 128 . 58 \right|\]
\[f_i \left| x_i - X \right|\]
95−105 9 100 900 28.58 257.22
105−115 13 110 1430 18.58 241.54
115−125 16 120 1920 8.58 137.28
125−135 26 130 3380 1.42 36.92
135−145 30 140 4200 11.42 342.6
145−155 12 150 1800 21.42 257.04
 
 

\[\sum^6_{i = 1} f_i = 106\]
 
 

\[\sum^6_{i = 1} f_i x_i = 13630\]
  \[\sum^8_{i = 1}|  f_i x_i  |- \bar{x}= 1272.6\]

 

\[N = \sum^6_{i = 1} f_i = 106\] and

\[\sum^6_{i = 1} f_i x_i = 13630\]

\[\therefore X = \frac{\sum^6_{i = 1} f_i x_i}{\sum^6_{i = 1} f_i}\]

\[ = \frac{13630}{106}\]

\[ = 128 . 58\]

\[\therefore \text{ Mean deviation } = \frac{1}{N} \sum^8_{i = 1} f_i \left| x_i - X \right|\]

\[ = \frac{1272 . 6}{106}\]

\[ = 12 . 005\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Statistics - Exercise 32.3 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 32 Statistics
Exercise 32.3 | Q 2.2 | Page 16

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the mean deviation about the mean for the data.

4, 7, 8, 9, 10, 12, 13, 17


Find the mean deviation about the median for the data.

13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


Find the mean deviation about the median for the data.

36, 72, 46, 42, 60, 45, 53, 46, 51, 49


Find the mean deviation about the mean for the data.

xi 5 10 15 20 25
fi 7 4 6 3 5

Find the mean deviation about the mean for the data.

xi 10 30 50 70 90
fi 4 24 28 16 8

Find the mean deviation about the mean for the data.

Income per day in ₹ Number of persons
0-100 4
100-200 8
200-300 9
300-400 10
400-500 7
500-600 5
600-700 4
700-800 3

Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age Number
16 - 20 5
21 - 25 6
26 - 30 12
31 - 35 14
36 - 40 26
41 - 45 12
46 - 50 16
51 - 55 9

Calculate the mean deviation about the median of the observation:

 38, 70, 48, 34, 42, 55, 63, 46, 54, 44


Calculate the mean deviation from the mean for the data: 

 4, 7, 8, 9, 10, 12, 13, 17


Calculate the mean deviation from the mean for the  data:

 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


In  22, 24, 30, 27, 29, 31, 25, 28, 41, 42 find the number of observations lying between 

\[\bar { X } \]  − M.D. and

\[\bar { X } \]   + M.D, where M.D. is the mean deviation from the mean.


In 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 find the number of observations lying between

\[\bar { X } \]  − M.D. and

\[\bar { X } \]   + M.D, where M.D. is the mean deviation from the mean.


Find the mean deviation from the mean for the data:

xi 10 30 50 70 90
fi 4 24 28 16 8

Find the mean deviation from the median for the  data:

xi 15 21 27 30 35
fi 3 5 6 7 8

 


Find the mean deviation from the median for the data: 

xi 74 89 42 54 91 94 35
fi 20 12 2 4 5 3 4

Find the mean deviation from the mean and from median of the following distribution:

Marks 0-10 10-20 20-30 30-40 40-50
No. of students 5 8 15 16 6

The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.

 

The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is


Find the mean deviation about the mean of the following data:

Size (x): 1 3 5 7 9 11 13 15
Frequency (f): 3 3 4 14 7 4 3 4

Find the mean deviation about the mean of the distribution:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Find the mean deviation about the median of the following distribution:

Marks obtained 10 11 12 14 15
No. of students 2 3 8 3 4

Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.


Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.


The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is ______.


If `barx` is the mean of n values of x, then `sum_(i = 1)^n (x_i - barx)` is always equal to ______. If a has any value other than `barx`, then `sum_(i = 1)^n (x_i - barx)^2` is ______ than `sum(x_i - a)^2`


If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×