मराठी

Find the Mean Deviation from the Mean for the Data:Classes95-105105-115115-125125-135135-145145-155frequencies91316263012 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the mean deviation from the mean for the data:

Classes 95-105 105-115 115-125 125-135 135-145 145-155
Frequencies 9 13 16 26 30 12

 

उत्तर

We will compute the mean deviation from the mean in the following way: 

Classes  Frequency 
\[f_i\]
Midpoints
\[x_i\]
 

\[f_i x_i\]
 

\[\left| x_i - X \right|\]
=
\[\left| x_i - 128 . 58 \right|\]
\[f_i \left| x_i - X \right|\]
95−105 9 100 900 28.58 257.22
105−115 13 110 1430 18.58 241.54
115−125 16 120 1920 8.58 137.28
125−135 26 130 3380 1.42 36.92
135−145 30 140 4200 11.42 342.6
145−155 12 150 1800 21.42 257.04
 
 

\[\sum^6_{i = 1} f_i = 106\]
 
 

\[\sum^6_{i = 1} f_i x_i = 13630\]
  \[\sum^8_{i = 1}|  f_i x_i  |- \bar{x}= 1272.6\]

 

\[N = \sum^6_{i = 1} f_i = 106\] and

\[\sum^6_{i = 1} f_i x_i = 13630\]

\[\therefore X = \frac{\sum^6_{i = 1} f_i x_i}{\sum^6_{i = 1} f_i}\]

\[ = \frac{13630}{106}\]

\[ = 128 . 58\]

\[\therefore \text{ Mean deviation } = \frac{1}{N} \sum^8_{i = 1} f_i \left| x_i - X \right|\]

\[ = \frac{1272 . 6}{106}\]

\[ = 12 . 005\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 32: Statistics - Exercise 32.3 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 32 Statistics
Exercise 32.3 | Q 2.2 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the mean deviation about the mean for the data.

4, 7, 8, 9, 10, 12, 13, 17


Find the mean deviation about the mean for the data.

38, 70, 48, 40, 42, 55, 63, 46, 54, 44


Find the mean deviation about the median for the data.

13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


Find the mean deviation about the mean for the data.

Income per day in ₹ Number of persons
0-100 4
100-200 8
200-300 9
300-400 10
400-500 7
500-600 5
600-700 4
700-800 3

Find the mean deviation about median for the following data:

Marks Number of girls
0-10 6
10-20 8
20-30 14
30-40 16
40-50 4
50-60 2

Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age Number
16 - 20 5
21 - 25 6
26 - 30 12
31 - 35 14
36 - 40 26
41 - 45 12
46 - 50 16
51 - 55 9

The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
 Find mean deviation from median


In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 find the number of observations lying between

\[\bar{ X } \]  − M.D. and

\[\bar{ X } \]  + M.D, where M.D. is the mean deviation from the mean.


Find the mean deviation from the mean for the data:

xi 5 7 9 10 12 15
fi 8 6 2 2 2 6

Find the mean deviation from the mean for the data:

Size 1 3 5 7 9 11 13 15
Frequency 3 3 4 14 7 4 3 4

Find the mean deviation from the median for the  data:

xi 15 21 27 30 35
fi 3 5 6 7 8

 


Find the mean deviation from the median for the data: 

xi 74 89 42 54 91 94 35
fi 20 12 2 4 5 3 4

Compute the mean deviation from the median of the following distribution:

Class 0-10 10-20 20-30 30-40 40-50
Frequency 5 10 20 5 10

Find the mean deviation from the mean for the data:

Classes 0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800
Frequencies 4 8 9 10 7 5 4 3

 


Find the mean deviation from the mean for the data:

Classes 0-10 10-20 20-30 30-40 40-50 50-60
Frequencies 6 8 14 16 4 2

The age distribution of 100 life-insurance policy holders is as follows:

Age (on nearest birth day) 17-19.5 20-25.5 26-35.5 36-40.5 41-50.5 51-55.5 56-60.5 61-70.5
No. of persons 5 16 12 26 14 12 6 5

Calculate the mean deviation from the median age


Calculate the mean deviation about the mean for the following frequency distribution:
 

Class interval: 0–4 4–8 8–12 12–16 16–20
Frequency 4 6 8 5 2

The mean deviation of the series aa + da + 2d, ..., a + 2n from its mean is


A batsman scores runs in 10 innings as 38, 70, 48, 34, 42, 55, 63, 46, 54 and 44. The mean deviation about mean is


Find the mean deviation about the mean of the distribution:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Find the mean deviation about the median of the following distribution:

Marks obtained 10 11 12 14 15
No. of students 2 3 8 3 4

Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.


Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.


Find the mean and variance of the frequency distribution given below:

`x` 1 ≤ x < 3 3 ≤ x < 5 5 ≤ x < 7 7 ≤ x < 10
`f` 6 4 5 1

Calculate the mean deviation from the median of the following data:

Class interval 0 – 6 6 – 12 12 – 18 18 – 24 24 – 30
Frequency 4 5 3 6 2

Determine mean and standard deviation of first n terms of an A.P. whose first term is a and common difference is d.


While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.


Mean deviation for n observations x1, x2, ..., xn from their mean `barx` is given by ______.


The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is ______.


If `barx` is the mean of n values of x, then `sum_(i = 1)^n (x_i - barx)` is always equal to ______. If a has any value other than `barx`, then `sum_(i = 1)^n (x_i - barx)^2` is ______ than `sum(x_i - a)^2`


The sum of squares of the deviations of the values of the variable is ______ when taken about their arithmetic mean.


Let X = {x ∈ N: 1 ≤ x ≤ 17} and Y = {ax + b: x ∈ X and a, b ∈ R, a > 0}. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×