Advertisements
Advertisements
प्रश्न
Find the mean deviation from the mean for the data:
Size | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
Frequency | 3 | 3 | 4 | 14 | 7 | 4 | 3 | 4 |
उत्तर
Size(xi) | Frequency (fi) | fixi | \[\left| x_i - \bar{x} \right|\] \[ = \left| x_i - 8 \right|\] |
\[f_i \left| x_i - x \right|\] \[ = f_i \left| x_i - 8 \right|\] |
1 | 3 | 3 | 7 | 21 |
3 | 3 | 9 | 5 | 15 |
5 | 4 | 20 | 3 | 12 |
7 | 14 | 98 | 1 | 14 |
9 | 7 | 63 | 1 | 7 |
11 | 4 | 44 | 3 | 12 |
13 | 3 | 39 | 5 | 15 |
15 | 4 | 60 | 7 | 28 |
\[N = 42\]
|
\[\sum^n_{i = 1} f_i x_i = 336\]
|
\[\sum^n_{i = 1} f_i \left| x_i - x \right| = 124\]
|
\[\bar{x} = \frac{\sum ^n_{i = 1} f_ix_i}{N} = \frac{336}{42} = 8\]
APPEARS IN
संबंधित प्रश्न
Find the mean deviation about the mean for the data.
38, 70, 48, 40, 42, 55, 63, 46, 54, 44
Find the mean deviation about the median for the data.
13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17
Find the mean deviation about the mean for the data.
xi | 10 | 30 | 50 | 70 | 90 |
fi | 4 | 24 | 28 | 16 | 8 |
Find the mean deviation about the mean for the data.
Height in cms | Number of boys |
95 - 105 | 9 |
105 - 115 | 13 |
115 - 125 | 26 |
125 - 135 | 30 |
135 - 145 | 12 |
145 - 155 | 10 |
Calculate the mean deviation about median age for the age distribution of 100 persons given below:
Age | Number |
16 - 20 | 5 |
21 - 25 | 6 |
26 - 30 | 12 |
31 - 35 | 14 |
36 - 40 | 26 |
41 - 45 | 12 |
46 - 50 | 16 |
51 - 55 | 9 |
Calculate the mean deviation about the median of the observation:
3011, 2780, 3020, 2354, 3541, 4150, 5000
Calculate the mean deviation about the median of the observation:
38, 70, 48, 34, 63, 42, 55, 44, 53, 47
Calculate the mean deviation of the following income groups of five and seven members from their medians:
I Income in Rs. |
II Income in Rs. |
4000 4200 4400 4600 4800 |
300 4000 4200 4400 4600 4800 5800 |
In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 find the number of observations lying between
\[\bar{ X } \] + M.D, where M.D. is the mean deviation from the mean.
In 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 find the number of observations lying between
\[\bar { X } \] − M.D. and
\[\bar { X } \] + M.D, where M.D. is the mean deviation from the mean.
Find the mean deviation from the mean for the data:
xi | 5 | 7 | 9 | 10 | 12 | 15 |
fi | 8 | 6 | 2 | 2 | 2 | 6 |
Find the mean deviation from the mean for the data:
xi | 10 | 30 | 50 | 70 | 90 |
fi | 4 | 24 | 28 | 16 | 8 |
Find the mean deviation from the median for the data:
xi | 15 | 21 | 27 | 30 | 35 |
fi | 3 | 5 | 6 | 7 | 8 |
Compute the mean deviation from the median of the following distribution:
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 5 | 10 | 20 | 5 | 10 |
Find the mean deviation from the mean for the data:
Classes | 0-100 | 100-200 | 200-300 | 300-400 | 400-500 | 500-600 | 600-700 | 700-800 |
Frequencies | 4 | 8 | 9 | 10 | 7 | 5 | 4 | 3 |
Find the mean deviation from the mean for the data:
Classes | 95-105 | 105-115 | 115-125 | 125-135 | 135-145 | 145-155 |
Frequencies | 9 | 13 | 16 | 26 | 30 | 12 |
Calculate the mean deviation about the mean for the following frequency distribution:
Class interval: | 0–4 | 4–8 | 8–12 | 12–16 | 16–20 |
Frequency | 4 | 6 | 8 | 5 | 2 |
The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.
For a frequency distribution mean deviation from mean is computed by
The mean deviation for n observations \[x_1 , x_2 , . . . , x_n\] from their mean \[\bar{X} \] is given by
Let \[x_1 , x_2 , . . . , x_n\] be n observations and \[X\] be their arithmetic mean. The standard deviation is given by
Find the mean deviation about the mean of the following data:
Size (x): | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
Frequency (f): | 3 | 3 | 4 | 14 | 7 | 4 | 3 | 4 |
The mean deviation of the data 2, 9, 9, 3, 6, 9, 4 from the mean is ______.
Find the mean deviation about the mean of the distribution:
Size | 20 | 21 | 22 | 23 | 24 |
Frequency | 6 | 4 | 5 | 1 | 4 |
Find the mean deviation about the median of the following distribution:
Marks obtained | 10 | 11 | 12 | 14 | 15 |
No. of students | 2 | 3 | 8 | 3 | 4 |
Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.
Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.
Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.
Determine mean and standard deviation of first n terms of an A.P. whose first term is a and common difference is d.
The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is ______.
When tested, the lives (in hours) of 5 bulbs were noted as follows: 1357, 1090, 1666, 1494, 1623
The mean deviations (in hours) from their mean is ______.
If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.