Advertisements
Advertisements
प्रश्न
Calculate the mean deviation of the following income groups of five and seven members from their medians:
I Income in Rs. |
II Income in Rs. |
4000 4200 4400 4600 4800 |
300 4000 4200 4400 4600 4800 5800 |
उत्तर
Calculate the mean deviation for the first data set.
The data is already arranged in ascending order.
For this data set, n is equal to 5.
Also, median,
M = 4400
\[MD = \frac{1}{n} \sum^n_{i = 1} \left| d_i \right|, \text{ where } \left| d_i \right| = \left| x_i - M \right|\]
\[x_i\]
|
\[\left| d_i \right| = \left| x_i - M \right|\]
|
4000 | 400 |
4200 | 200 |
4400 | 0 |
4600 | 200 |
4800 | 400 |
Total | 1200 |
\[MD = \frac{1}{5} \times 1200 = 240\]
Therefore, for the income of families in the first group, the mean deviation from the median is Rs 240.
Now, consider the second data set. This is also arranged in ascending order.
Here,
n = 7.
Also, median,
xi |
\[\left| d_i \right| = \left| x_i - M \right|\]
|
300 | 4100 |
4000 | 400 |
4200 | 200 |
4400 | 0 |
4600 | 200 |
4800 | 400 |
5800 | 1400 |
Total | 6700 |
\[MD = \frac{1}{7} \times 6700 = 957 . 14\]
Therefore, for the income of families in the second group, the mean deviation from the median is Rs 957.14.
APPEARS IN
संबंधित प्रश्न
Find the mean deviation about the median for the data.
xi | 15 | 21 | 27 | 30 | 35 |
fi | 3 | 5 | 6 | 7 | 8 |
Find the mean deviation about the mean for the data.
Income per day in ₹ | Number of persons |
0-100 | 4 |
100-200 | 8 |
200-300 | 9 |
300-400 | 10 |
400-500 | 7 |
500-600 | 5 |
600-700 | 4 |
700-800 | 3 |
Calculate the mean deviation about the median of the observation:
3011, 2780, 3020, 2354, 3541, 4150, 5000
Calculate the mean deviation about the median of the observation:
38, 70, 48, 34, 42, 55, 63, 46, 54, 44
Calculate the mean deviation from the mean for the data:
(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49
Calculate the mean deviation from the mean for the data:
38, 70, 48, 40, 42, 55, 63, 46, 54, 44a
The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
Find mean deviation from median
The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
Find mean deviation from the mean also.
In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 find the number of observations lying between
\[\bar{ X } \] + M.D, where M.D. is the mean deviation from the mean.
Find the mean deviation from the mean for the data:
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
Find the mean deviation from the mean for the data:
Classes | 0-100 | 100-200 | 200-300 | 300-400 | 400-500 | 500-600 | 600-700 | 700-800 |
Frequencies | 4 | 8 | 9 | 10 | 7 | 5 | 4 | 3 |
Find the mean deviation from the mean for the data:
Classes | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Frequencies | 6 | 8 | 14 | 16 | 4 | 2 |
Compute mean deviation from mean of the following distribution:
Mark | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 |
No. of students | 8 | 10 | 15 | 25 | 20 | 18 | 9 | 5 |
Find the mean deviation from the mean and from median of the following distribution:
Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
No. of students | 5 | 8 | 15 | 16 | 6 |
Calculate mean deviation about median age for the age distribution of 100 persons given below:
Age: | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 |
Number of persons | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
Calculate the mean deviation about the mean for the following frequency distribution:
Class interval: | 0–4 | 4–8 | 8–12 | 12–16 | 16–20 |
Frequency | 4 | 6 | 8 | 5 | 2 |
Calculate mean deviation from the median of the following data:
Class interval: | 0–6 | 6–12 | 12–18 | 18–24 | 24–30 |
Frequency | 4 | 5 | 3 | 6 | 2 |
The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.
The mean deviation from the median is
The mean deviation of the numbers 3, 4, 5, 6, 7 from the mean is
Let \[x_1 , x_2 , . . . , x_n\] be n observations and \[X\] be their arithmetic mean. The standard deviation is given by
Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.
Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.
Find the mean and variance of the frequency distribution given below:
`x` | 1 ≤ x < 3 | 3 ≤ x < 5 | 5 ≤ x < 7 | 7 ≤ x < 10 |
`f` | 6 | 4 | 5 | 1 |
Calculate the mean deviation about the mean for the following frequency distribution:
Class interval | 0 – 4 | 4 – 8 | 8 – 12 | 12 – 16 | 16 – 20 |
Frequency | 4 | 6 | 8 | 5 | 2 |
Determine mean and standard deviation of first n terms of an A.P. whose first term is a and common difference is d.
While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.
The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is ______.
The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is ______.
If `barx` is the mean of n values of x, then `sum_(i = 1)^n (x_i - barx)` is always equal to ______. If a has any value other than `barx`, then `sum_(i = 1)^n (x_i - barx)^2` is ______ than `sum(x_i - a)^2`
The sum of squares of the deviations of the values of the variable is ______ when taken about their arithmetic mean.