Advertisements
Advertisements
प्रश्न
The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is ______.
पर्याय
50000
250000
252500
255000
उत्तर
The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is 252500.
Explanation:
Here `barx = (sumx_i)/n`
50 = `(sumx_i)/100`
⇒ `sumx_i` = 5000
∴ S.D. = `sqrt((sumx_i^2)/n - ((sumx_i^2)/n)^2`
5 = `sqrt((sumx_i^2)/100 - (5000/100)^2`
⇒ 25 = `(sumx_i^2)/100 - 2500`
⇒ `(sumx_i^2)/100 = 2500 + 25`
⇒ `(sumx_i^2)/00` = 2525
∴ `sumx_i^2 = 255 xx 100` = 252500
APPEARS IN
संबंधित प्रश्न
Find the mean deviation about the mean for the data.
4, 7, 8, 9, 10, 12, 13, 17
Find the mean deviation about the mean for the data.
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
Find the mean deviation about the median for the data.
xi | 5 | 7 | 9 | 10 | 12 | 15 |
fi | 8 | 6 | 2 | 2 | 2 | 6 |
Find the mean deviation about the mean for the data.
Income per day in ₹ | Number of persons |
0-100 | 4 |
100-200 | 8 |
200-300 | 9 |
300-400 | 10 |
400-500 | 7 |
500-600 | 5 |
600-700 | 4 |
700-800 | 3 |
Find the mean deviation about the mean for the data.
Height in cms | Number of boys |
95 - 105 | 9 |
105 - 115 | 13 |
115 - 125 | 26 |
125 - 135 | 30 |
135 - 145 | 12 |
145 - 155 | 10 |
Find the mean deviation about median for the following data:
Marks | Number of girls |
0-10 | 6 |
10-20 | 8 |
20-30 | 14 |
30-40 | 16 |
40-50 | 4 |
50-60 | 2 |
Calculate the mean deviation about the median of the observation:
3011, 2780, 3020, 2354, 3541, 4150, 5000
Calculate the mean deviation about the median of the observation:
22, 24, 30, 27, 29, 31, 25, 28, 41, 42
Calculate the mean deviation about the median of the observation:
38, 70, 48, 34, 63, 42, 55, 44, 53, 47
Calculate the mean deviation from the mean for the data:
13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17
Calculate the mean deviation from the mean for the data:
38, 70, 48, 40, 42, 55, 63, 46, 54, 44a
Calculate the mean deviation of the following income groups of five and seven members from their medians:
I Income in Rs. |
II Income in Rs. |
4000 4200 4400 4600 4800 |
300 4000 4200 4400 4600 4800 5800 |
Compute the mean deviation from the median of the following distribution:
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 5 | 10 | 20 | 5 | 10 |
Find the mean deviation from the mean for the data:
Classes | 95-105 | 105-115 | 115-125 | 125-135 | 135-145 | 145-155 |
Frequencies | 9 | 13 | 16 | 26 | 30 | 12 |
Compute mean deviation from mean of the following distribution:
Mark | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 |
No. of students | 8 | 10 | 15 | 25 | 20 | 18 | 9 | 5 |
Find the mean deviation from the mean and from median of the following distribution:
Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
No. of students | 5 | 8 | 15 | 16 | 6 |
Calculate mean deviation from the median of the following data:
Class interval: | 0–6 | 6–12 | 12–18 | 18–24 | 24–30 |
Frequency | 4 | 5 | 3 | 6 | 2 |
The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.
The mean deviation for n observations \[x_1 , x_2 , . . . , x_n\] from their mean \[\bar{X} \] is given by
Let \[x_1 , x_2 , . . . , x_n\] be n observations and \[X\] be their arithmetic mean. The standard deviation is given by
Find the mean deviation about the mean of the distribution:
Size | 20 | 21 | 22 | 23 | 24 |
Frequency | 6 | 4 | 5 | 1 | 4 |
Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.
While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.
The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is ______.
If `barx` is the mean of n values of x, then `sum_(i = 1)^n (x_i - barx)` is always equal to ______. If a has any value other than `barx`, then `sum_(i = 1)^n (x_i - barx)^2` is ______ than `sum(x_i - a)^2`
The sum of squares of the deviations of the values of the variable is ______ when taken about their arithmetic mean.
Find the mean deviation about the mean for the data.
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.