मराठी

The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is ______.

पर्याय

  • 50000

  • 250000

  • 252500

  • 255000

MCQ
रिकाम्या जागा भरा

उत्तर

The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is 252500.

Explanation:

Here `barx = (sumx_i)/n`

50 = `(sumx_i)/100`

⇒ `sumx_i` = 5000

∴ S.D. = `sqrt((sumx_i^2)/n - ((sumx_i^2)/n)^2`

5 = `sqrt((sumx_i^2)/100 - (5000/100)^2`

⇒ 25 = `(sumx_i^2)/100 - 2500`

⇒ `(sumx_i^2)/100 = 2500 + 25`

⇒ `(sumx_i^2)/00` = 2525

∴ `sumx_i^2 = 255 xx 100` = 252500

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Statistics - Exercise [पृष्ठ २८२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 15 Statistics
Exercise | Q 30 | पृष्ठ २८२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the mean deviation about the mean for the data.

4, 7, 8, 9, 10, 12, 13, 17


Find the mean deviation about the mean for the data.

xi 5 10 15 20 25
fi 7 4 6 3 5

Find the mean deviation about the median for the data.

xi 5 7 9 10 12 15
fi 8 6 2 2 2 6

Find the mean deviation about the mean for the data.

Income per day in ₹ Number of persons
0-100 4
100-200 8
200-300 9
300-400 10
400-500 7
500-600 5
600-700 4
700-800 3

Find the mean deviation about the mean for the data.

Height in cms Number of boys
95 - 105 9
105 - 115 13
115 - 125 26
125 - 135 30
135 - 145 12
145 - 155 10

Find the mean deviation about median for the following data:

Marks Number of girls
0-10 6
10-20 8
20-30 14
30-40 16
40-50 4
50-60 2

Calculate the mean deviation about the median of the observation:

3011, 2780, 3020, 2354, 3541, 4150, 5000


Calculate the mean deviation about the median of the observation:

 22, 24, 30, 27, 29, 31, 25, 28, 41, 42


Calculate the mean deviation about the median of the observation:

 38, 70, 48, 34, 63, 42, 55, 44, 53, 47

 

Calculate the mean deviation from the mean for the  data:

 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


Calculate the mean deviation from the mean for the  data:

 38, 70, 48, 40, 42, 55, 63, 46, 54, 44a


Calculate the mean deviation of the following income groups of five and seven members from their medians:

I
Income in Rs.
II
Income in Rs.
4000
4200
4400
4600
4800

 
 300
4000
4200
4400
4600
4800
5800

Compute the mean deviation from the median of the following distribution:

Class 0-10 10-20 20-30 30-40 40-50
Frequency 5 10 20 5 10

Find the mean deviation from the mean for the data:

Classes 95-105 105-115 115-125 125-135 135-145 145-155
Frequencies 9 13 16 26 30 12

 


Compute mean deviation from mean of the following distribution:

Mark 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
No. of students 8 10 15 25 20 18 9 5

Find the mean deviation from the mean and from median of the following distribution:

Marks 0-10 10-20 20-30 30-40 40-50
No. of students 5 8 15 16 6

Calculate mean deviation from the median of the following data: 

Class interval: 0–6 6–12 12–18 18–24 24–30
Frequency 4 5 3 6 2

The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.

 

The mean deviation for n observations \[x_1 , x_2 , . . . , x_n\]  from their mean \[\bar{X} \]  is given by

 
  

Let \[x_1 , x_2 , . . . , x_n\]  be n observations and  \[X\]  be their arithmetic mean. The standard deviation is given by

 

Find the mean deviation about the mean of the distribution:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.


While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.


The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is ______.


If `barx` is the mean of n values of x, then `sum_(i = 1)^n (x_i - barx)` is always equal to ______. If a has any value other than `barx`, then `sum_(i = 1)^n (x_i - barx)^2` is ______ than `sum(x_i - a)^2`


The sum of squares of the deviations of the values of the variable is ______ when taken about their arithmetic mean.


Find the mean deviation about the mean for the data.

xi 5 10 15 20 25
fi 7 4 6 3 5

If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×