मराठी

Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is ______.

पर्याय

  • s

  • ks

  • s + k

  • `s/k`

MCQ
रिकाम्या जागा भरा

उत्तर

Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is s.

Explanation:

Given observation are a, b, c, d and e

∴ Mean = m = `(a + b + c + d + e)/5`

∴ `sumx_i` = 5m

Now mean of a + k, b + k, c + k, d + k and e + k is

= `(a + k + b + k + c + k + d + k + e + k)/5`

= `((a + b + c + d + e) + 5k)/5`

= `(5m + 5k)/5`

= m + k

∴ S.D. = `sqrt((sum(x_i + k)^2)/n - [(sumx_i + k)/n]^2`

= `sqrt((sum(x_i^2 + k^2 + 2x_ik))/n - (m + k)^2`

= `sqrt((sumx_i^2)/n + (sumk^2)/n + (2ksumx_i)/n - m^2 - k^2 - 2mk)`

= `sqrt((sumx_i^2)/n + k^2 + 2km - m^2 - k^2 - 2mk)`

= `sqrt((sumx_i^2)/n - m^2)`  .....`[because (sumx_i)/n = m]`

= s

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Statistics - Exercise [पृष्ठ २८२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 15 Statistics
Exercise | Q 31 | पृष्ठ २८२

संबंधित प्रश्‍न

Find the mean and variance for the first n natural numbers.


Find the mean and variance for the data.

xi 92 93 97 98 102 104 109
fi 3 2 3 2 6 3 3

The sum and sum of squares corresponding to length (in cm) and weight (in gm) of 50 plant products are given below:

`sum_(i-1)^50 x_i = 212, sum_(i=1)^50 x_i^2 = 902.8, sum_(i=1)^50 y_i = 261, sum_(i = 1)^50 y_i^2 = 1457.6`

Which is more varying, the length or weight?

 

Given that  `barx` is the mean and σ2 is the variance of n observations x1, x2, …,xn. Prove that the mean and variance of the observations ax1, ax2, ax3, …,axare `abarx` and a2 σ2, respectively (a ≠ 0).


The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

  1. If wrong item is omitted.
  2. If it is replaced by 12.

The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.


Find the mean, variance and standard deviation for the data:

 2, 4, 5, 6, 8, 17.


The variance of 20 observations is 5. If each observation is multiplied by 2, find the variance of the resulting observations.

 

The variance of 15 observations is 4. If each observation is increased by 9, find the variance of the resulting observations.


Find the standard deviation for the following distribution:

x : 4.5 14.5 24.5 34.5 44.5 54.5 64.5
f : 1 5 12 22 17 9 4

Calculate the mean and S.D. for the following data:

Expenditure in Rs: 0-10 10-20 20-30 30-40 40-50
Frequency: 14 13 27 21 15

Calculate the standard deviation for the following data:

Class: 0-30 30-60 60-90 90-120 120-150 150-180 180-210
Frequency: 9 17 43 82 81 44 24

A student obtained the mean and standard deviation of 100 observations as 40 and 5.1 respectively. It was later found that one observation was wrongly copied as 50, the correct figure being 40. Find the correct mean and S.D.


Find the mean and variance of frequency distribution given below:

xi: 1 ≤ < 3 3 ≤ < 5 5 ≤ < 7 7 ≤ < 10
fi: 6 4 5 1

Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.      


If the sum of the squares of deviations for 10 observations taken from their mean is 2.5, then write the value of standard deviation.

 

If X and Y are two variates connected by the relation

\[Y = \frac{aX + b}{c}\]  and Var (X) = σ2, then write the expression for the standard deviation of Y.
 
 

In a series of 20 observations, 10 observations are each equal to k and each of the remaining half is equal to − k. If the standard deviation of the observations is 2, then write the value of k.


If v is the variance and σ is the standard deviation, then

 


If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be


The standard deviation of first 10 natural numbers is


The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is 


Let x1x2, ..., xn be n observations. Let  \[y_i = a x_i + b\]  for i = 1, 2, 3, ..., n, where a and b are constants. If the mean of \[x_i 's\]  is 48 and their standard deviation is 12, the mean of \[y_i 's\]  is 55 and standard deviation of \[y_i 's\]  is 15, the values of a and are 

 
 
 
   

The standard deviation of the observations 6, 5, 9, 13, 12, 8, 10 is


The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.


Standard deviations for first 10 natural numbers is ______.


Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×