Advertisements
Advertisements
Question
Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is ______.
Options
s
ks
s + k
`s/k`
Solution
Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is s.
Explanation:
Given observation are a, b, c, d and e
∴ Mean = m = `(a + b + c + d + e)/5`
∴ `sumx_i` = 5m
Now mean of a + k, b + k, c + k, d + k and e + k is
= `(a + k + b + k + c + k + d + k + e + k)/5`
= `((a + b + c + d + e) + 5k)/5`
= `(5m + 5k)/5`
= m + k
∴ S.D. = `sqrt((sum(x_i + k)^2)/n - [(sumx_i + k)/n]^2`
= `sqrt((sum(x_i^2 + k^2 + 2x_ik))/n - (m + k)^2`
= `sqrt((sumx_i^2)/n + (sumk^2)/n + (2ksumx_i)/n - m^2 - k^2 - 2mk)`
= `sqrt((sumx_i^2)/n + k^2 + 2km - m^2 - k^2 - 2mk)`
= `sqrt((sumx_i^2)/n - m^2)` .....`[because (sumx_i)/n = m]`
= s
APPEARS IN
RELATED QUESTIONS
Find the mean and variance for the data.
6, 7, 10, 12, 13, 4, 8, 12
Find the mean and variance for the first n natural numbers.
Find the mean and variance for the data.
xi | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
fi | 3 | 2 | 3 | 2 | 6 | 3 | 3 |
The diameters of circles (in mm) drawn in a design are given below:
Diameters | 33 - 36 | 37 - 40 | 41 - 44 | 45 - 48 | 49 - 52 |
No. of circles | 15 | 17 | 21 | 22 | 25 |
Calculate the standard deviation and mean diameter of the circles.
[Hint: First make the data continuous by making the classes as 32.5 - 36.5, 36.5 - 40.5, 40.5 - 44.5, 44.5 - 48.5, 48.5 - 52.5 and then proceed.]
The following is the record of goals scored by team A in a football session:
No. of goals scored |
0 |
1 |
2 |
3 |
4 |
No. of matches |
1 |
9 |
7 |
5 |
3 |
For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?
Given that `barx` is the mean and σ2 is the variance of n observations x1, x2, …,xn. Prove that the mean and variance of the observations ax1, ax2, ax3, …,axn are `abarx` and a2 σ2, respectively (a ≠ 0).
The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
- If wrong item is omitted.
- If it is replaced by 12.
The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:
Subject |
Mathematics |
Physics |
Chemistry |
Mean |
42 |
32 |
40.9 |
Standard deviation |
12 |
15 |
20 |
Which of the three subjects shows the highest variability in marks and which shows the lowest?
Find the mean, variance and standard deviation for the data:
2, 4, 5, 6, 8, 17.
The mean and standard deviation of 6 observations are 8 and 4 respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.
The mean and variance of 8 observations are 9 and 9.25 respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.
The mean and standard deviation of 20 observations are found to be 10 and 2 respectively. On rechecking it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted
(ii) if it is replaced by 12.
Calculate the mean and S.D. for the following data:
Expenditure in Rs: | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency: | 14 | 13 | 27 | 21 | 15 |
Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.
Two plants A and B of a factory show following results about the number of workers and the wages paid to them
Plant A | Plant B | |
No. of workers | 5000 | 6000 |
Average monthly wages | Rs 2500 | Rs 2500 |
Variance of distribution of wages | 81 | 100 |
In which plant A or B is there greater variability in individual wages?
The mean and standard deviation of marks obtained by 50 students of a class in three subjects, mathematics, physics and chemistry are given below:
Subject | Mathematics | Physics | Chemistry |
Mean | 42 | 32 | 40.9 |
Standard Deviation | 12 | 15 | 20 |
Which of the three subjects shows the highest variability in marks and which shows the lowest?
From the data given below state which group is more variable, G1 or G2?
Marks | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Group G1 | 9 | 17 | 32 | 33 | 40 | 10 | 9 |
Group G2 | 10 | 20 | 30 | 25 | 43 | 15 | 7 |
If X and Y are two variates connected by the relation
If each observation of a raw data whose standard deviation is σ is multiplied by a, then write the S.D. of the new set of observations.
Let x1, x2, ..., xn be n observations. Let \[y_i = a x_i + b\] for i = 1, 2, 3, ..., n, where a and b are constants. If the mean of \[x_i 's\] is 48 and their standard deviation is 12, the mean of \[y_i 's\] is 55 and standard deviation of \[y_i 's\] is 15, the values of a and b are
The standard deviation of the observations 6, 5, 9, 13, 12, 8, 10 is
Show that the two formulae for the standard deviation of ungrouped data.
`sigma = sqrt((x_i - barx)^2/n)` and `sigma`' = `sqrt((x^2_i)/n - barx^2)` are equivalent.
Find the standard deviation of the first n natural numbers.
The mean and standard deviation of some data for the time taken to complete a test are calculated with the following results:
Number of observations = 25, mean = 18.2 seconds, standard deviation = 3.25 seconds. Further, another set of 15 observations x1, x2, ..., x15, also in seconds, is now available and we have `sum_(i = 1)^15 x_i` = 279 and `sum_(i = 1)^15 x^2` = 5524. Calculate the standard derivation based on all 40 observations.
If for distribution `sum(x - 5)` = 3, `sum(x - 5)^2` = 43 and total number of items is 18. Find the mean and standard deviation.
Let x1, x2, ... xn be n observations. Let wi = lxi + k for i = 1, 2, ...n, where l and k are constants. If the mean of xi’s is 48 and their standard deviation is 12, the mean of wi’s is 55 and standard deviation of wi’s is 15, the values of l and k should be ______.
Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is ______.
The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.