Advertisements
Advertisements
Question
The mean and standard deviation of marks obtained by 50 students of a class in three subjects, mathematics, physics and chemistry are given below:
Subject | Mathematics | Physics | Chemistry |
Mean | 42 | 32 | 40.9 |
Standard Deviation | 12 | 15 | 20 |
Which of the three subjects shows the highest variability in marks and which shows the lowest?
Solution
We know: \[CV = \frac{\sigma}{\bar{X}} \times 100\]
\[\bar{{X_m}} = 42, \sigma_m = 12\]
\[ \bar{{X_p}} = 32, \sigma_p = 15\]
\[ \bar{{X_c}} = 40 . 9, \sigma_c = 20\]
CV of mathematics marks
Since CV of chemistry is the greatest, the variability of marks in chemistry is the highest and that of mathematics is the lowest.
APPEARS IN
RELATED QUESTIONS
Find the mean and variance for the data.
xi | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
fi | 3 | 2 | 3 | 2 | 6 | 3 | 3 |
The mean and variance of eight observations are 9 and 9.25, respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.
The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:
Subject |
Mathematics |
Physics |
Chemistry |
Mean |
42 |
32 |
40.9 |
Standard deviation |
12 |
15 |
20 |
Which of the three subjects shows the highest variability in marks and which shows the lowest?
The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.
Find the mean, variance and standard deviation for the data:
6, 7, 10, 12, 13, 4, 8, 12.
Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.
The variance of 20 observations is 5. If each observation is multiplied by 2, find the variance of the resulting observations.
Show that the two formulae for the standard deviation of ungrouped data
\[\sigma = \sqrt{\frac{1}{n} \sum \left( x_i - X \right)^2_{}}\] and
\[\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - X^2_{}}\] are equivalent, where \[X = \frac{1}{n}\sum_{} x_i\]
Find the standard deviation for the following distribution:
x : | 4.5 | 14.5 | 24.5 | 34.5 | 44.5 | 54.5 | 64.5 |
f : | 1 | 5 | 12 | 22 | 17 | 9 | 4 |
Find the standard deviation for the following data:
x : | 3 | 8 | 13 | 18 | 23 |
f : | 7 | 10 | 15 | 10 | 6 |
Calculate the mean and S.D. for the following data:
Expenditure in Rs: | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency: | 14 | 13 | 27 | 21 | 15 |
Calculate the A.M. and S.D. for the following distribution:
Class: | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency: | 18 | 16 | 15 | 12 | 10 | 5 | 2 | 1 |
Calculate the mean, median and standard deviation of the following distribution:
Class-interval: | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 | 56-60 | 61-65 | 66-70 |
Frequency: | 2 | 3 | 8 | 12 | 16 | 5 | 2 | 3 |
Find the mean and variance of frequency distribution given below:
xi: | 1 ≤ x < 3 | 3 ≤ x < 5 | 5 ≤ x < 7 | 7 ≤ x < 10 |
fi: | 6 | 4 | 5 | 1 |
Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.
Two plants A and B of a factory show following results about the number of workers and the wages paid to them
Plant A | Plant B | |
No. of workers | 5000 | 6000 |
Average monthly wages | Rs 2500 | Rs 2500 |
Variance of distribution of wages | 81 | 100 |
In which plant A or B is there greater variability in individual wages?
The means and standard deviations of heights ans weights of 50 students of a class are as follows:
Weights | Heights | |
Mean | 63.2 kg | 63.2 inch |
Standard deviation | 5.6 kg | 11.5 inch |
Which shows more variability, heights or weights?
Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?
Find the coefficient of variation for the following data:
Size (in cms): | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 |
No. of items: | 2 | 8 | 20 | 35 | 20 | 15 |
If the sum of the squares of deviations for 10 observations taken from their mean is 2.5, then write the value of standard deviation.
In a series of 20 observations, 10 observations are each equal to k and each of the remaining half is equal to − k. If the standard deviation of the observations is 2, then write the value of k.
If each observation of a raw data whose standard deviation is σ is multiplied by a, then write the S.D. of the new set of observations.
If the standard deviation of a variable X is σ, then the standard deviation of variable \[\frac{a X + b}{c}\] is
If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be
Let x1, x2, ..., xn be n observations. Let \[y_i = a x_i + b\] for i = 1, 2, 3, ..., n, where a and b are constants. If the mean of \[x_i 's\] is 48 and their standard deviation is 12, the mean of \[y_i 's\] is 55 and standard deviation of \[y_i 's\] is 15, the values of a and b are
The standard deviation of the observations 6, 5, 9, 13, 12, 8, 10 is
The mean and standard deviation of some data for the time taken to complete a test are calculated with the following results:
Number of observations = 25, mean = 18.2 seconds, standard deviation = 3.25 seconds. Further, another set of 15 observations x1, x2, ..., x15, also in seconds, is now available and we have `sum_(i = 1)^15 x_i` = 279 and `sum_(i = 1)^15 x^2` = 5524. Calculate the standard derivation based on all 40 observations.
Two sets each of 20 observations, have the same standard derivation 5. The first set has a mean 17 and the second a mean 22. Determine the standard deviation of the set obtained by combining the given two sets.
If for distribution `sum(x - 5)` = 3, `sum(x - 5)^2` = 43 and total number of items is 18. Find the mean and standard deviation.
Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is ______.
The standard deviation is ______to the mean deviation taken from the arithmetic mean.
The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.