Advertisements
Advertisements
Question
The mean and standard deviation of some data for the time taken to complete a test are calculated with the following results:
Number of observations = 25, mean = 18.2 seconds, standard deviation = 3.25 seconds. Further, another set of 15 observations x1, x2, ..., x15, also in seconds, is now available and we have `sum_(i = 1)^15 x_i` = 279 and `sum_(i = 1)^15 x^2` = 5524. Calculate the standard derivation based on all 40 observations.
Solution
Given, n1 = 25
`barx_1` = 18.2
`sigma_1` = 3.25
n2 = 15
`sum_(i = 1)^15 x_i` = 279
And `sum_(i = 1)^15 x_i^2` = 5524
For first set `sumx_i = 25 xx 18.2` = 455
∴ `sigma_1^2 = (sumx_i^2)/25 - (18.2)^2`
⇒ `(3.25)^2 = (sumx_i^2)/25 - (18.2)^2`
⇒ 10.5625 + 331.24 = `(sumx_i^2)/25`
⇒ `sumx_i^2 = 25 xx (10.5625 + 331.24)`
= `25 xx 341.8025`
= 8545.0625
For combined S.D. of the 40 observations, n = 40.
Now `sum_(i = 1)^40 x_i^2` = 5524 + 8545.0625 = 14069.0625
And `sum_(i = 1)^40 x_i` = 455 + 279 = 734
∴ S.D. = `sqrt((14069.0625)/40 - (734/40)^2`
= `sqrt(351.1726 - (18.35)^2`
= `sqrt(351.726 - 336.7225)`
= `sqrt(15.0035)`
= 3.87
APPEARS IN
RELATED QUESTIONS
Find the mean and variance for the data.
xi | 6 | 10 | 14 | 18 | 24 | 28 | 30 |
fi | 2 | 4 | 7 | 12 | 8 | 4 | 3 |
The following is the record of goals scored by team A in a football session:
No. of goals scored |
0 |
1 |
2 |
3 |
4 |
No. of matches |
1 |
9 |
7 |
5 |
3 |
For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?
The sum and sum of squares corresponding to length x (in cm) and weight y (in gm) of 50 plant products are given below:
`sum_(i-1)^50 x_i = 212, sum_(i=1)^50 x_i^2 = 902.8, sum_(i=1)^50 y_i = 261, sum_(i = 1)^50 y_i^2 = 1457.6`
Which is more varying, the length or weight?
Given that `barx` is the mean and σ2 is the variance of n observations x1, x2, …,xn. Prove that the mean and variance of the observations ax1, ax2, ax3, …,axn are `abarx` and a2 σ2, respectively (a ≠ 0).
The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
- If wrong item is omitted.
- If it is replaced by 12.
Find the mean, variance and standard deviation for the data:
6, 7, 10, 12, 13, 4, 8, 12.
Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.
The variance of 20 observations is 5. If each observation is multiplied by 2, find the variance of the resulting observations.
The mean and standard deviation of 6 observations are 8 and 4 respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.
The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations were omitted.
Calculate the mean and S.D. for the following data:
Expenditure in Rs: | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency: | 14 | 13 | 27 | 21 | 15 |
Calculate the standard deviation for the following data:
Class: | 0-30 | 30-60 | 60-90 | 90-120 | 120-150 | 150-180 | 180-210 |
Frequency: | 9 | 17 | 43 | 82 | 81 | 44 | 24 |
Calculate the A.M. and S.D. for the following distribution:
Class: | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency: | 18 | 16 | 15 | 12 | 10 | 5 | 2 | 1 |
Calculate the mean, median and standard deviation of the following distribution:
Class-interval: | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 | 56-60 | 61-65 | 66-70 |
Frequency: | 2 | 3 | 8 | 12 | 16 | 5 | 2 | 3 |
If X and Y are two variates connected by the relation
If v is the variance and σ is the standard deviation, then
If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be
The standard deviation of first 10 natural numbers is
The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is
Show that the two formulae for the standard deviation of ungrouped data.
`sigma = sqrt((x_i - barx)^2/n)` and `sigma`' = `sqrt((x^2_i)/n - barx^2)` are equivalent.
Life of bulbs produced by two factories A and B are given below:
Length of life (in hours) |
Factory A (Number of bulbs) |
Factory B (Number of bulbs) |
550 – 650 | 10 | 8 |
650 – 750 | 22 | 60 |
750 – 850 | 52 | 24 |
850 – 950 | 20 | 16 |
950 – 1050 | 16 | 12 |
120 | 120 |
The bulbs of which factory are more consistent from the point of view of length of life?
The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.
Let x1, x2, ..., xn be n observations and `barx` be their arithmetic mean. The formula for the standard deviation is given by ______.
Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is ______.
Standard deviations for first 10 natural numbers is ______.
If the variance of a data is 121, then the standard deviation of the data is ______.