English

The Mean and Standard Deviation of a Group of 100 Observations Were Found to Be 20 and 3 Respectively. - Mathematics

Advertisements
Advertisements

Question

The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations were omitted.

Solution

\[n = 100 \]

\[\text{ Mean } = \bar{X} = 20 \]

\[SD = \sigma = 3 \]

\[\text{ Misread values are 21, 21 and } 18 . \]

\[ \frac{1}{n}\sum_{} x_i = \bar{X} \]

\[ \Rightarrow{\frac{1}{100}} \sum x_i = 20_{} \]

\[ \Rightarrow \sum x_i = 20 \times 100 = 2000_{} \left[ {\text{ This sum is incorrect due to misread values }  .} \right] . . . . (1) \]

\[\text{ If three misread values are to be omitted, the total number of enteries will be 97 }  . \]

\[\text{ Also, } \sum x_i = 2000 - \left( {21 - 21 - 18} \right) = 1940 \]

\[\text{ Corrected }  \bar{X} ={\frac{1940}{97}} = 20 . . . . (2)\]

\[\sigma = 3 \]

\[ \Rightarrow \text{ Variance } = \sigma^2 = 9\]

\[ = \text{ Variance } = \frac{1}{n} \sum_{} {x_i}^2 - \left( \bar{X} \right)^2 \]

\[ \Rightarrow \frac{1}{100} \sum_{} {x_i}^2 - {20}^2 = 9\]

\[ \Rightarrow \frac{1}{100} \sum_{} {x_i}^2 = 9 + 400 \]

\[ \Rightarrow \frac{1}{100} \sum_{} {x_i}^2 = 409\]

\[ \Rightarrow \sum_{} {x_i}^2 = 409 \times 100 = 40900 \left( \text{ This is an incorrect sum due to misread values }. \right) . . . (2)\]

\[\text{ Corrected } \sum_{} {x_i}^2 = 40900 - \left( {21}^2 + {21}^2 + {18}^2 \right)\]

\[ = 40900 - 441 - 441 - 324\]

\[ = 39694 . . . . (3) \]

\[\text{ From equations (2) and (3), we get: }  \]

\[\text{ Corrected variance }  = {\frac{1}{n}} \sum_{} {x_i}^2 - \left( {\bar{X}} \right)^2 \]

\[ = \frac{1}{97} \times 39694 - \left( 20 \right)^2 \]

\[ = 409 . 216 - 400 \]

\[ = 9 . 216\]

\[ \text{ Corrected SD } = \sqrt{{\text{ Corrected variance} }} \]

\[ = \sqrt{{9 . 216}} \]

\[ = 3 . 0357 \]

 Thus, after omitting three values, the mean would be 20 and SD would be 3.0357.

 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Statistics - Exercise 32.4 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 32 Statistics
Exercise 32.4 | Q 10 | Page 28

RELATED QUESTIONS

Find the mean and variance for the data.

xi 6 10 14 18 24 28 30
fi 2 4 7 12 8 4 3

The following is the record of goals scored by team A in a football session:

No. of goals scored

0

1

2

3

4

No. of matches

1

9

7

5

3

For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?


The mean and variance of eight observations are 9 and 9.25, respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.


The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

  1. If wrong item is omitted.
  2. If it is replaced by 12.

The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:

Subject

Mathematics

Physics

Chemistry

Mean

42

32

40.9

Standard deviation

12

15

20

Which of the three subjects shows the highest variability in marks and which shows the lowest?


Find the mean, variance and standard deviation for the data:

 2, 4, 5, 6, 8, 17.


Find the mean, variance and standard deviation for the data:

6, 7, 10, 12, 13, 4, 8, 12.


Find the mean, variance and standard deviation for the data:

 227, 235, 255, 269, 292, 299, 312, 321, 333, 348.


The mean and variance of 8 observations are 9 and 9.25 respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.

 

For a group of 200 candidates, the mean and standard deviations of scores were found to be 40 and 15 respectively. Later on it was discovered that the scores of 43 and 35 were misread as 34 and 53 respectively. Find the correct mean and standard deviation.

 

The mean and standard deviation of 100 observations were calculated as 40 and 5.1 respectively by a student who took by mistake 50 instead of 40 for one observation. What are the correct mean and standard deviation?


Find the standard deviation for the following data:

x : 3 8 13 18 23
f : 7 10 15 10 6

Calculate the A.M. and S.D. for the following distribution:

Class: 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Frequency: 18 16 15 12 10 5 2 1

A student obtained the mean and standard deviation of 100 observations as 40 and 5.1 respectively. It was later found that one observation was wrongly copied as 50, the correct figure being 40. Find the correct mean and S.D.


Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?


From the data given below state which group is more variable, G1 or G2?

Marks 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Group G1 9 17 32 33 40 10 9
Group G2 10 20 30 25 43 15 7

Find the coefficient of variation for the following data:

Size (in cms): 10-15 15-20 20-25 25-30 30-35 35-40
No. of items: 2 8 20 35 20 15

If v is the variance and σ is the standard deviation, then

 


If the standard deviation of a variable X is σ, then the standard deviation of variable \[\frac{a X + b}{c}\] is

 

If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be


The standard deviation of the observations 6, 5, 9, 13, 12, 8, 10 is


A set of n values x1, x2, ..., xn has standard deviation 6. The standard deviation of n values x1 + k, x2 + k, ..., xn + k will be ______.


Find the standard deviation of the first n natural numbers.


The mean and standard deviation of some data for the time taken to complete a test are calculated with the following results:
Number of observations = 25, mean = 18.2 seconds, standard deviation = 3.25 seconds. Further, another set of 15 observations x1, x2, ..., x15, also in seconds, is now available and we have `sum_(i = 1)^15 x_i` = 279 and `sum_(i  = 1)^15 x^2` = 5524. Calculate the standard derivation based on all 40 observations.


The mean and standard deviation of a set of n1 observations are `barx_1` and s1, respectively while the mean and standard deviation of another set of n2 observations are `barx_2` and  s2, respectively. Show that the standard deviation of the combined set of (n1 + n2) observations is given by

S.D. = `sqrt((n_1(s_1)^2 + n_2(s_2)^2)/(n_1 + n_2) + (n_1n_2 (barx_1 - barx_2)^2)/(n_1 + n_2)^2)`


The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.


If for distribution `sum(x - 5)` = 3, `sum(x - 5)^2` = 43 and total number of items is 18. Find the mean and standard deviation.


The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is ______.


Let x1, x2, ..., xn be n observations and `barx` be their arithmetic mean. The formula for the standard deviation is given by ______.


Let x1, x2, x3, x4, x5 be the observations with mean m and standard deviation s. The standard deviation of the observations kx1, kx2, kx3, kx4, kx5 is ______.


Standard deviations for first 10 natural numbers is ______.


Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is ______.


If the variance of a data is 121, then the standard deviation of the data is ______.


The standard deviation of a data is ______ of any change in orgin, but is ______ on the change of scale.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×