English

The mean and variance of 8 observations are 9 and 9.25 respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations. - Mathematics

Advertisements
Advertisements

Question

The mean and variance of 8 observations are 9 and 9.25 respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.

 

Solution

 Let x and y be the remaining two observations.

\[n = 8 \]

\[\text{ Variance } = 9 . 25\]

\[ \bar{X} = \text{ Mean } = 9 \]

\[ \Rightarrow \frac{6 + 7 + 10 + 12 + 12 + 13 + x + y}{8} = 9\]

\[ \Rightarrow 60 + x + y = 72\]

\[ \Rightarrow x + y = 12 . . . (1)\]

\[\text{ Variance } X = \frac{1}{n} \sum^8_{i = 1} {x_i}^2 - \left( \bar{X} \right)^2 \]

\[ \Rightarrow 9 . 25 = \left( \frac{1}{8} \times \left( 6^2 + 7^2 + {10}^2 + {12}^2 + {12}^2 + {13}^2 + x^2 + y^2 \right) \right) - 9^2 \]

\[ \Rightarrow 9 . 25 = \frac{1}{8}\left( 642 + x^2 + y^2 \right) - 81\]

\[ \Rightarrow 9 . 25 \times 8 = 642 + x^2 + y^2 - 648\]

\[ \Rightarrow x^2 + y^2 = 80 . . . . (2)\]

\[ \text{ We know } , \]

\[ \left( x + y \right)^2 + \left( x - y \right)^2 = 2\left( x^2 + y^2 \right)\]

\[ \Rightarrow {12}^2 + \left( x - y \right)^2 = 2 \times 80 \left[ \text{ using equations (1) and (2) } \right]\]

\[ \Rightarrow 144 + \left( x - y \right)^2 = 160\]

\[ \Rightarrow \left( x - y \right)^2 = 16\]

\[ \Rightarrow x - y = \pm 4 \]

\[\text{ If x - y = 4, then x + y = 12 and x - y = 4 give x = 8 and }  y = 4\]

\[\text{ If x - y = - 4, then x + y = 12 and x - y = 4 give x = 4 and } y = 8\]

Thus, the remaining two observations are 8 and 4.

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Statistics - Exercise 32.4 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 32 Statistics
Exercise 32.4 | Q 6 | Page 28

RELATED QUESTIONS

Find the mean and variance for the data.

6, 7, 10, 12, 13, 4, 8, 12


Find the mean and variance for the first 10 multiples of 3.


Find the mean and variance for the data.

xi 92 93 97 98 102 104 109
fi 3 2 3 2 6 3 3

The diameters of circles (in mm) drawn in a design are given below:

Diameters 33 - 36 37 - 40 41 - 44 45 - 48 49 - 52
No. of circles 15 17 21 22 25

Calculate the standard deviation and mean diameter of the circles.

[Hint: First make the data continuous by making the classes as 32.5 - 36.5, 36.5 - 40.5, 40.5 - 44.5, 44.5 - 48.5, 48.5 - 52.5 and then proceed.]


The mean and variance of eight observations are 9 and 9.25, respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.


Given that  `barx` is the mean and σ2 is the variance of n observations x1, x2, …,xn. Prove that the mean and variance of the observations ax1, ax2, ax3, …,axare `abarx` and a2 σ2, respectively (a ≠ 0).


Find the mean, variance and standard deviation for the data:

 2, 4, 5, 6, 8, 17.


Find the mean, variance and standard deviation for the data:

 227, 235, 255, 269, 292, 299, 312, 321, 333, 348.


The variance of 15 observations is 4. If each observation is increased by 9, find the variance of the resulting observations.


Find the standard deviation for the following data:

x : 3 8 13 18 23
f : 7 10 15 10 6

Calculate the mean and S.D. for the following data:

Expenditure in Rs: 0-10 10-20 20-30 30-40 40-50
Frequency: 14 13 27 21 15

Calculate the standard deviation for the following data:

Class: 0-30 30-60 60-90 90-120 120-150 150-180 180-210
Frequency: 9 17 43 82 81 44 24

A student obtained the mean and standard deviation of 100 observations as 40 and 5.1 respectively. It was later found that one observation was wrongly copied as 50, the correct figure being 40. Find the correct mean and S.D.


The weight of coffee in 70 jars is shown in the following table:                                                  

Weight (in grams): 200–201 201–202 202–203 203–204 204–205 205–206
Frequency: 13 27 18 10 1 1

Determine the variance and standard deviation of the above distribution.  


Two plants A and B of a factory show following results about the number of workers and the wages paid to them 

  Plant A Plant B
No. of workers 5000 6000
Average monthly wages Rs 2500 Rs 2500
Variance of distribution of wages 81 100

In which plant A or B is there greater variability in individual wages?

 

 


The means and standard deviations of heights ans weights of 50 students of a class are as follows: 

  Weights Heights
Mean 63.2 kg 63.2 inch
Standard deviation 5.6 kg 11.5 inch

Which shows more variability, heights or weights?

 

Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?


The mean and standard deviation of marks obtained by 50 students of a class in three subjects, mathematics, physics and chemistry are given below: 

Subject Mathematics Physics Chemistry
Mean 42 32 40.9
Standard Deviation 12 15 20

Which of the three subjects shows the highest variability in marks and which shows the lowest?

 

If v is the variance and σ is the standard deviation, then

 


If the standard deviation of a variable X is σ, then the standard deviation of variable \[\frac{a X + b}{c}\] is

 

If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be


Let abcdbe the observations with mean m and standard deviation s. The standard deviation of the observations a + kb + kc + kd + ke + k is


The standard deviation of first 10 natural numbers is


Show that the two formulae for the standard deviation of ungrouped data.

`sigma = sqrt((x_i - barx)^2/n)` and `sigma`' = `sqrt((x^2_i)/n - barx^2)` are equivalent.


Two sets each of 20 observations, have the same standard derivation 5. The first set has a mean 17 and the second a mean 22. Determine the standard deviation of the set obtained by combining the given two sets.


Mean and standard deviation of 100 observations were found to be 40 and 10, respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.


Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is ______.


Let x1, x2, x3, x4, x5 be the observations with mean m and standard deviation s. The standard deviation of the observations kx1, kx2, kx3, kx4, kx5 is ______.


Standard deviations for first 10 natural numbers is ______.


If the variance of a data is 121, then the standard deviation of the data is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×