English

Let A, B, C, D, E Be the Observations with Mean M and Standard Deviation S. the Standard Deviation of the Observations a + K, B + K, C + K, D + K, E + K is - Mathematics

Advertisements
Advertisements

Question

Let abcdbe the observations with mean m and standard deviation s. The standard deviation of the observations a + kb + kc + kd + ke + k is

Options

  • s     

  • ks    

  •  s + k    

  • \[\frac{s}{k}\]

MCQ

Solution

The given observations are abcde.
Mean = m =\[\frac{a + b + c + d + e}{5}\]

\[\Rightarrow \sum_{} x_i = a + b + c + d + e = 5m\]      .....(1)

Standard deviation, s = \[\sqrt{\frac{\sum_{} x_i^2}{5} - m^2}\]

Now, consider the observations a + kb + kc + kd + ke + k.
New mean

\[= \frac{\left( a + k \right) + \left( b + k \right) + \left( c + k \right) + \left( d + k \right) + \left( e + k \right)}{5}\]

\[= \frac{a + b + c + d + e + 5k}{5}\]

\[ = \frac{5m + 5k}{5}\]

\[ = m + k\]

∴ New standard deviation

\[= \sqrt{\frac{\sum_{} \left( x_i + k \right)^2}{5} - \left( m + k \right)^2}\]

\[ = \sqrt{\frac{\sum_{} \left( x_i^2 + k^2 + 2 x_i k \right)}{5} - \left( m^2 + k^2 + 2mk \right)}\]

\[ = \sqrt{\frac{\sum_{} x_i^2}{5} + \frac{\sum_{} k^2}{5} + \frac{\sum_{} 2 x_i k}{5} - \left( m^2 + k^2 + 2mk \right)}\]

\[ = \sqrt{\frac{\sum_{} x_i^2}{5} - m^2 + \frac{5 k^2}{5} - k^2 + \frac{2k \sum_{} x_i}{5} - 2mk}\]

\[= \sqrt{\frac{\sum_{} x_i^2}{5} - m^2 + \frac{2k \times 5m}{5} - 2mk} \left[ \text{ Using } \left( 1 \right) \right]\]

\[ = \sqrt{\frac{\sum_{} x_i^2}{5} - m^2}\]

\[ = s\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Statistics - Exercise 32.9 [Page 51]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 32 Statistics
Exercise 32.9 | Q 16 | Page 51

RELATED QUESTIONS

Find the mean and variance for the data.

6, 7, 10, 12, 13, 4, 8, 12


Find the mean and variance for the first 10 multiples of 3.


Find the mean and variance for the data.

xi 92 93 97 98 102 104 109
fi 3 2 3 2 6 3 3

The diameters of circles (in mm) drawn in a design are given below:

Diameters 33 - 36 37 - 40 41 - 44 45 - 48 49 - 52
No. of circles 15 17 21 22 25

Calculate the standard deviation and mean diameter of the circles.

[Hint: First make the data continuous by making the classes as 32.5 - 36.5, 36.5 - 40.5, 40.5 - 44.5, 44.5 - 48.5, 48.5 - 52.5 and then proceed.]


The sum and sum of squares corresponding to length (in cm) and weight (in gm) of 50 plant products are given below:

`sum_(i-1)^50 x_i = 212, sum_(i=1)^50 x_i^2 = 902.8, sum_(i=1)^50 y_i = 261, sum_(i = 1)^50 y_i^2 = 1457.6`

Which is more varying, the length or weight?

 

The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12 and 14. Find the remaining two observations.


The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations


Given that  `barx` is the mean and σ2 is the variance of n observations x1, x2, …,xn. Prove that the mean and variance of the observations ax1, ax2, ax3, …,axare `abarx` and a2 σ2, respectively (a ≠ 0).


The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

  1. If wrong item is omitted.
  2. If it is replaced by 12.

The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:

Subject

Mathematics

Physics

Chemistry

Mean

42

32

40.9

Standard deviation

12

15

20

Which of the three subjects shows the highest variability in marks and which shows the lowest?


The mean and standard deviation of 20 observations are found to be 10 and 2 respectively. On rechecking it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted
(ii) if it is replaced by 12.


Show that the two formulae for the standard deviation of ungrouped data 

\[\sigma = \sqrt{\frac{1}{n} \sum \left( x_i - X \right)^2_{}}\] and 

\[\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - X^2_{}}\]  are equivalent, where \[X = \frac{1}{n}\sum_{} x_i\]

 

 

Find the standard deviation for the following data:

x : 3 8 13 18 23
f : 7 10 15 10 6

Calculate the mean and S.D. for the following data:

Expenditure in Rs: 0-10 10-20 20-30 30-40 40-50
Frequency: 14 13 27 21 15

Calculate the standard deviation for the following data:

Class: 0-30 30-60 60-90 90-120 120-150 150-180 180-210
Frequency: 9 17 43 82 81 44 24

Calculate the A.M. and S.D. for the following distribution:

Class: 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Frequency: 18 16 15 12 10 5 2 1

Calculate the mean, median and standard deviation of the following distribution:

Class-interval: 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70
Frequency: 2 3 8 12 16 5 2 3

Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?


Find the coefficient of variation for the following data:

Size (in cms): 10-15 15-20 20-25 25-30 30-35 35-40
No. of items: 2 8 20 35 20 15

If X and Y are two variates connected by the relation

\[Y = \frac{aX + b}{c}\]  and Var (X) = σ2, then write the expression for the standard deviation of Y.
 
 

In a series of 20 observations, 10 observations are each equal to k and each of the remaining half is equal to − k. If the standard deviation of the observations is 2, then write the value of k.


The standard deviation of the data:

x: 1 a a2 .... an
f: nC0 nC1 nC2 .... nCn

is


If the standard deviation of a variable X is σ, then the standard deviation of variable \[\frac{a X + b}{c}\] is

 

The standard deviation of first 10 natural numbers is


Life of bulbs produced by two factories A and B are given below:

Length of life
(in hours)
Factory A
(Number of bulbs)
Factory B
(Number of bulbs)
550 – 650 10 8
650 – 750 22 60
750 – 850 52 24
850 – 950 20 16
950 – 1050 16 12
  120 120

The bulbs of which factory are more consistent from the point of view of length of life?


A set of n values x1, x2, ..., xn has standard deviation 6. The standard deviation of n values x1 + k, x2 + k, ..., xn + k will be ______.


Find the standard deviation of the first n natural numbers.


The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.


Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is ______.


If the variance of a data is 121, then the standard deviation of the data is ______.


The standard deviation of a data is ______ of any change in orgin, but is ______ on the change of scale.


The standard deviation is ______to the mean deviation taken from the arithmetic mean.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×