English

Coefficient of Variation of Two Distributions Are 60% and 70% and Their Standard Deviations Are 21 and 16 Respectively. What Are Their Arithmetic Means? - Mathematics

Advertisements
Advertisements

Question

Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?

Solution

The coefficient of variation (CV) for the first distribution is 60.
The coefficient of variation (CV) for the second distribution is 70.

\[SD\left( \sigma_1 \right) = 21\]
\[SD\left( \sigma_2 \right) = 16\]

We know: \[CV = \frac{\sigma}{\bar{X}} \times 100\]

From the above formula, we get:

\[CV = \frac{\sigma}{\bar{X}} \times 100\]
\[\bar{{X_1}} = \frac{21}{60} \times 100 = 35\]
\[ \bar{{X_2}} = \frac{16}{70} \times 100 = 22 . 86\]
 
shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Statistics - Exercise 32.7 [Page 48]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 32 Statistics
Exercise 32.7 | Q 3 | Page 48

RELATED QUESTIONS

Find the mean and variance for the first 10 multiples of 3.


Find the mean and variance for the data.

xi 6 10 14 18 24 28 30
fi 2 4 7 12 8 4 3

The following is the record of goals scored by team A in a football session:

No. of goals scored

0

1

2

3

4

No. of matches

1

9

7

5

3

For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?


The sum and sum of squares corresponding to length (in cm) and weight (in gm) of 50 plant products are given below:

`sum_(i-1)^50 x_i = 212, sum_(i=1)^50 x_i^2 = 902.8, sum_(i=1)^50 y_i = 261, sum_(i = 1)^50 y_i^2 = 1457.6`

Which is more varying, the length or weight?

 

The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12 and 14. Find the remaining two observations.


The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations


Given that  `barx` is the mean and σ2 is the variance of n observations x1, x2, …,xn. Prove that the mean and variance of the observations ax1, ax2, ax3, …,axare `abarx` and a2 σ2, respectively (a ≠ 0).


The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

  1. If wrong item is omitted.
  2. If it is replaced by 12.

Find the mean, variance and standard deviation for the data:

 2, 4, 5, 6, 8, 17.


Find the mean, variance and standard deviation for the data:

6, 7, 10, 12, 13, 4, 8, 12.


Find the mean, variance and standard deviation for the data:

 227, 235, 255, 269, 292, 299, 312, 321, 333, 348.


Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.

 

The variance of 15 observations is 4. If each observation is increased by 9, find the variance of the resulting observations.


Calculate the mean and S.D. for the following data:

Expenditure in Rs: 0-10 10-20 20-30 30-40 40-50
Frequency: 14 13 27 21 15

Calculate the A.M. and S.D. for the following distribution:

Class: 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Frequency: 18 16 15 12 10 5 2 1

The means and standard deviations of heights ans weights of 50 students of a class are as follows: 

  Weights Heights
Mean 63.2 kg 63.2 inch
Standard deviation 5.6 kg 11.5 inch

Which shows more variability, heights or weights?

 

The mean and standard deviation of marks obtained by 50 students of a class in three subjects, mathematics, physics and chemistry are given below: 

Subject Mathematics Physics Chemistry
Mean 42 32 40.9
Standard Deviation 12 15 20

Which of the three subjects shows the highest variability in marks and which shows the lowest?

 

Find the coefficient of variation for the following data:

Size (in cms): 10-15 15-20 20-25 25-30 30-35 35-40
No. of items: 2 8 20 35 20 15

If each observation of a raw data whose standard deviation is σ is multiplied by a, then write the S.D. of the new set of observations.

 

The standard deviation of the data:

x: 1 a a2 .... an
f: nC0 nC1 nC2 .... nCn

is


If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be


Let abcdbe the observations with mean m and standard deviation s. The standard deviation of the observations a + kb + kc + kd + ke + k is


The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is 


The standard deviation of the observations 6, 5, 9, 13, 12, 8, 10 is


Show that the two formulae for the standard deviation of ungrouped data.

`sigma = sqrt((x_i - barx)^2/n)` and `sigma`' = `sqrt((x^2_i)/n - barx^2)` are equivalent.


Find the standard deviation of the first n natural numbers.


The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.


The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is ______.


Let x1, x2, x3, x4, x5 be the observations with mean m and standard deviation s. The standard deviation of the observations kx1, kx2, kx3, kx4, kx5 is ______.


Standard deviations for first 10 natural numbers is ______.


Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is ______.


The standard deviation of a data is ______ of any change in orgin, but is ______ on the change of scale.


The standard deviation is ______to the mean deviation taken from the arithmetic mean.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×