English

If Each Observation of a Raw Data Whose Standard Deviation is σ is Multiplied by A, Then Write the S.D. of the New Set of Observations. - Mathematics

Advertisements
Advertisements

Question

If each observation of a raw data whose standard deviation is σ is multiplied by a, then write the S.D. of the new set of observations.

 

Solution

Standard deviation,

\[\sigma = \sqrt{\frac{\sum_i \left( x_i - x \right)^2}{n}}\]
Here, 
\[\bar{ x} \] represents the arithmetic mean.
Multiplying each  \[x_i\] bay \[a\] : \[x_{new} = \frac{1}{n}\sum_i a . x_i \]
\[ = a \times \frac{1}{n} \sum_i x_i \]
\[ = a . x_{old}\]
\[\text{ New standard deviation,}  \sigma_{new} = \sqrt{\frac{\sum_i \left( a . x_i - a . x \right)^2}{n}}\]
\[ = \sqrt{\frac{\sum_i a^2 . \left( x_i - x \right)^2}{n}}\]
\[ = \left| a \right|\sqrt{\frac{\sum_i \left( x_i - x \right)^2}{n}}\]
\[ = \left| a \right| . \sigma\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Statistics - Exercise 32.8 [Page 49]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 32 Statistics
Exercise 32.8 | Q 6 | Page 49

RELATED QUESTIONS

Find the mean and variance for the first 10 multiples of 3.


Find the mean and variance for the data.

xi 92 93 97 98 102 104 109
fi 3 2 3 2 6 3 3

The sum and sum of squares corresponding to length (in cm) and weight (in gm) of 50 plant products are given below:

`sum_(i-1)^50 x_i = 212, sum_(i=1)^50 x_i^2 = 902.8, sum_(i=1)^50 y_i = 261, sum_(i = 1)^50 y_i^2 = 1457.6`

Which is more varying, the length or weight?

 

The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12 and 14. Find the remaining two observations.


Given that  `barx` is the mean and σ2 is the variance of n observations x1, x2, …,xn. Prove that the mean and variance of the observations ax1, ax2, ax3, …,axare `abarx` and a2 σ2, respectively (a ≠ 0).


The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:

Subject

Mathematics

Physics

Chemistry

Mean

42

32

40.9

Standard deviation

12

15

20

Which of the three subjects shows the highest variability in marks and which shows the lowest?


The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.


Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.

 

The variance of 15 observations is 4. If each observation is increased by 9, find the variance of the resulting observations.


The mean and variance of 8 observations are 9 and 9.25 respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.

 

Find the standard deviation for the following data:

x : 3 8 13 18 23
f : 7 10 15 10 6

Calculate the mean and S.D. for the following data:

Expenditure in Rs: 0-10 10-20 20-30 30-40 40-50
Frequency: 14 13 27 21 15

A student obtained the mean and standard deviation of 100 observations as 40 and 5.1 respectively. It was later found that one observation was wrongly copied as 50, the correct figure being 40. Find the correct mean and S.D.


Find the mean and variance of frequency distribution given below:

xi: 1 ≤ < 3 3 ≤ < 5 5 ≤ < 7 7 ≤ < 10
fi: 6 4 5 1

Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.      


If the sum of the squares of deviations for 10 observations taken from their mean is 2.5, then write the value of standard deviation.

 

If v is the variance and σ is the standard deviation, then

 


If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be


The standard deviation of first 10 natural numbers is


The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is 


Show that the two formulae for the standard deviation of ungrouped data.

`sigma = sqrt((x_i - barx)^2/n)` and `sigma`' = `sqrt((x^2_i)/n - barx^2)` are equivalent.


Life of bulbs produced by two factories A and B are given below:

Length of life
(in hours)
Factory A
(Number of bulbs)
Factory B
(Number of bulbs)
550 – 650 10 8
650 – 750 22 60
750 – 850 52 24
850 – 950 20 16
950 – 1050 16 12
  120 120

The bulbs of which factory are more consistent from the point of view of length of life?


Find the standard deviation of the first n natural numbers.


If for distribution `sum(x - 5)` = 3, `sum(x - 5)^2` = 43 and total number of items is 18. Find the mean and standard deviation.


Let x1, x2, ..., xn be n observations and `barx` be their arithmetic mean. The formula for the standard deviation is given by ______.


Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is ______.


Let x1, x2, ... xn be n observations. Let wi = lxi + k for i = 1, 2, ...n, where l and k are constants. If the mean of xi’s is 48 and their standard deviation is 12, the mean of wi’s is 55 and standard deviation of wi’s is 15, the values of l and k should be ______.


Standard deviations for first 10 natural numbers is ______.


Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is ______.


The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×